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I Theory

Let us consider some Hamiltonian H0, whose exact eigenstates are known; we then apply a
perturbation to this system:

H = H0 + λ δH. (1.1)

where λ δH is small compared to H0. Note that λ can be varied so that this perturbation
remains small (often, however it is taken to be 1). For many perturbations, it is extremely dif-
ficult to exactly solve for the eigenstates and eigenenergies; perturbation theory is a method
by which we can approximate these objects. In practice, the exact solutions to the eigen-
states and eigenenergies are written as power series in λ such that the O(λ0) terms are the
eigenstates and eigenenergies of H0 (which are already known); we then solve order-by-order
for the higher-order terms (called “corrections”).

I.i Preliminaries and Goals

We start by noting that H0 satisfies

H0
∣∣k(0)〉 = E

(0)
k

∣∣k(0)〉 , (1.2)

where
∣∣k(0)〉 is an eigenstate of the unperturbed Hamiltonian, H0, and E

(0)
k is the corre-

sponding eigenenergy. Note that we are only considering Hamiltonians with non-degenerate
energies, i.e.:

E
(0)
1 < E

(0)
2 < · · · < E

(0)
k−1 < E

(0)
k < E

(0)
k+1 . . . , (1.3)

where E
(0)
1 is the ground-state energy of H0. Now our goal is to find how the states and

energies change with our perturbation.

H |k′〉 = E ′k |k′〉 , (1.4)

where

|k′〉 ≡
∣∣k(0)〉+ |δk〉 , (1.5a)

E ′k ≡ E
(0)
k + δEk, (1.5b)

where |δk〉 and δEk are the total corrections to the eigenstates and eigenenergies, which we
will solve for order-by-order in λ.

I.ii Order-by-Order Corrections

Now we can write the corrections to the eigenstates and eigenenergies as power series in λ:

|δk〉 = λ
∣∣k(1)〉+ λ2

∣∣k(2)〉+ . . . , (1.6a)

δEk = λE
(1)
k + λ2E

(2)
k + . . . . (1.6b)
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Now we have reduced the problem to determining these corrections to the eiegenstates and
eigenenergies; note that the higher the order of the correction, the less it contributes to the
total correction—this is more obvious when λ is a small parameter. To actually solve for
these corrections, we start by substituting Equation 1.1 into Equation 1.4:

(H0 + λδH − E ′k) |k′〉 = 0; (1.7)

We then substitute Equations 1.6a and 1.6b into this:

[(H0 − E(0)
k )− λ(E

(1)
k − δH)− λ2E(2)

k − · · · − λ
nE

(n)
k − . . . ]

× [
∣∣k(0)〉+ λ

∣∣k(1)〉+ λ2
∣∣k(2)〉+ · · ·+ λn

∣∣k(n)〉+ . . . ] = 0, (1.8)

where λ ∈ (0, 1]. Since powers of λ are linearly-independent, we can separate Equation 1.8
up according to the powers of λ. We start with the zeroth-order equation, which reads:

(H0 − E(0)
k )
∣∣k(0)〉 = 0; (1.9)

you will recognize this as the eigenvalue equation for the unperturbed Hamiltonian. The
situation gets somewhat more complicated when we gather the O(λ1) terms:

(H0 − E(0)
k )
∣∣k(1)〉 = (E

(1)
k − δH)

∣∣k(0)〉 . (1.10)

In general, the O(λn) term will be of the form:

(H0 − E(0)
k )
∣∣k(n)〉 = (E

(1)
k − δH)

∣∣k(n−1)〉+ E
(2)
k

∣∣k(n−2)〉+ · · ·+ E
(n)
k

∣∣k(0)〉 . (1.11)

Notice from the form of these equations that we will need to solve sequentially for the
corrections, since the O(λn) equation contains all of the lower-order corrections as well.

Let us now project
∣∣k(1)〉 onto the basis formed by the eigenstates of H0,

∣∣l(0)〉:∣∣k(1)〉 =
∑
l

cl
∣∣l(0)〉 ; (1.12)

plugging this into Equation 1.10, we find:

(E
(1)
k − δH)

∣∣k(0)〉 = (H0 − E(0)
k )
∑
l

cl
∣∣l(0)〉

=
∑
l

(E
(0)
l − E

(0)
k )cl

∣∣l(0)〉
=
∑
l 6=k

(E
(0)
l − E

(0)
k )cl

∣∣l(0)〉 . (1.13)

Now, since this equations determines the form of
∣∣k(1)〉, we see that the

∣∣k(0)〉-term does not
contribute to the first-order correction; consequently, we have∣∣k(1)〉 =

∑
l 6=k

cl
∣∣l(0)〉 . (1.14)
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Taking the inner product of this with the zeroth-order correction, we find:〈
k(0)
∣∣k(1)〉 =

∑
l 6=k

cl
〈
k(0)
∣∣l(0)〉

= 0; (1.15)

so the zeroth- and first-order corrections are orthogonal to each other. Note that all of the
higher-order corrections will also have this property, which is obvious when we look at the
l.h.s. of Equation 1.11; so, we have 〈

k(0)
∣∣k(n)〉 = 0. (1.16)

This will equation will be useful to us presently.

We now have all of the information we need to find the corrections to the energy.
Although there are two unknowns (assuming that we have already solved for all of the lower-
order corrections), we can use Equation 1.16 to remove one of these degrees of freedom. Let’s
start with the first-order equation and multiply from the left by the dual of

∣∣k(0)〉:〈
k(0)
∣∣ (H0 − E(0)

k )
∣∣k(1)〉 =

〈
k(0)
∣∣ (E(1)

k − δH)
∣∣k(0)〉 ; (1.17)

the l.h.s. cancels so that we are left with (using Equation 1.16):

E
(1)
k =

〈
k(0)
∣∣ δH ∣∣k(0)〉 . (1.18)

Happily, this means we do not need to know
∣∣k(1)〉 in order to find the first-order correction

to the energy. We need only find the matrix element of the perturbing Hamiltonian using
the zeroth-order correction. We can apply the same process to Equation 1.11, where we see
the l.h.s. will always be zero, so that, in general, we have:

0 =
〈
k(0)
∣∣ (E(1)

k − δH)
∣∣k(n−1)〉+ E

(2)
k

〈
k(0)
∣∣k(n−2)〉+ · · ·+ E

(n)
k

〈
k(0)
∣∣k(0)〉

= E
(n)
k −

〈
k(0)
∣∣ δH ∣∣k(n−1)〉 ; (1.19)

we can then rewrite this as
E

(0)
k =

〈
k(0)
∣∣ δH ∣∣k(n−1)〉 . (1.20)

So we see that, we require knowledge of the O(λn−1) correction to the eigenstate in order to
find the O(λn) correction to the energy; so it is clear what our next step should be.

Initially we took the overlap of equation 1.10 with the same energy state; now we try
its overlap with some other energy eigenstate, i.e. l 6= k, which yields:〈

l(0)
∣∣ (H0 − E(0)

k )
∣∣k(1)〉 =

〈
l(0)
∣∣ (E(1)

k − δH)
∣∣k(0)〉 . (1.21)

We can readily simplify rewrite this as〈
l(0)
∣∣k(1)〉 = − δHlk

E
(0)
l − E

(0)
k

, (1.22)
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where
δHlk ≡

〈
l(0)
∣∣ δH ∣∣k(0)〉 . (1.23)

As you may recall, we stated that this formalism is only applicable to non-degenerate states;
Equation 1.22 now shows this explicitly. Note that the state

∣∣l(0)〉 may be degenerate, since

1.22 would not run into a pole in this case; the trouble arrises when
∣∣k(0)〉 is degenerate,

since there would be at least one state
∣∣l(0)〉 for which there would be a pole in E

(0)
k . Using

the completeness relation, we can write the relation∣∣k(1)〉 =
∑
l

∣∣l(0)〉 〈l(0)∣∣k(1)〉
=
∑
l 6=k

∣∣l(0)〉 〈l(0)∣∣k(1)〉 . (1.24)

Now if we multiply 1.22 by
∣∣l(0)〉 and then sum over l, we obtain the first-order correction

to the wave function: ∣∣k(1)〉 = −
∑
l 6=k

δHlk

E
(0)
l − E

(0)
k

∣∣l(0)〉 . (1.25)

Finally, we can rewrite our second order energy correction entirely in terms of the unper-
turbed states and energies along with the perturbing Hamiltonian:

E
(2)
k =

〈
k(0)
∣∣ δH ∣∣k(1)〉

= −
∑
l 6=k

〈
k(0)
∣∣ δH ∣∣l(0)〉 δHlk

E
(0)
l − E

(0)
k

= −
∑
l 6=k

|δHlk|2

E
(0)
l − E

(0)
k

. (1.26)

II Example

II.i Problem

Consider a harmonic oscillator with characteristic frequency, ω, to which the following per-
turbation is added:

V = β(a†a† + aa). (2.1)

(a): Determine the first-order corrections to the ground state energy and wave function.

(b): Compute the second-order correction to the ground state energy.
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II.ii Solution

II.ii.i a

We start by finding the first-order correction to the energy this is readily done using Equation
1.18 with

∣∣k(0)〉 = |0〉, where |0〉 is the ground state of the harmonic oscillator; first of all
note that when we act upon this state with the annihilation operator, we get

a |0〉 = 0, (2.2)

and taking the Hermitian conjugate of this, we also have

〈0| a† = 0. (2.3)

From this, we very easily see that

E
(1)
0 = 〈0|V |0〉

= β 〈0|a†a† + aa|0〉
= 0. (2.4)

Well that wasn’t too much of a challenge, but now we should look into the correction
to the wave function, which is obtained from Equation 1.25; first of all, note that

δHlk =
〈
l(0)
∣∣ β(a†a† + aa) |0〉

=
√

2β
〈
l(0)
∣∣2〉 , (2.5)

where |2〉 is the second excited state of the Harmonic oscillator. Consequently, all terms
besides l = 2 will go to zero in the sum, and we have∣∣∣k(1)0

〉
= −

√
2β

E
(0)
2 − E

(0)
0

|2〉 ; (2.6)

the energies, are, of course, given by

E(0)
n =

(
n+

1

2

)
~ω, (2.7)

so that ∣∣∣k(1)0

〉
= − β√

2~ω
|2〉 . (2.8)

II.ii.ii b

Having already computed the first-order correction to the wave function, the calculation of
the second-order correction to the energy should be trivial; we need merely employ Equation
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1.26. We have already determined δHl0, and as was the case previously, l = 2 will be the
only non-zero term in the sum; now, noting that

|δH20| = 2β2, (2.9)

we find that the second-order correction to the ground state energy is

E
(2)
0 = − β

2

~ω
. (2.10)
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