Adding Angular Momentum

Zach Serikow
Mostafa Ali
Michigan State University
Department of Physics and Astronomy

Dec 7, 2020

(1) Problem 1: Clebsch-Gordan Coefficients

(2) Problem 2: Zeeman Effect

Problem: Express the state $\left\lvert\, S=\frac{1}{2}\right., L=1, m_{s}=\frac{1}{2}, m_{l}=0>$ as a linear combination of eigenstates of total angular momentum J and projection m_{j}.

Problem: Express the state $\left\lvert\, S=\frac{1}{2}\right., L=1, m_{s}=\frac{1}{2}, m_{I}=0>$ as a linear combination of eigenstates of total angular momentum J and projection m_{j}.

Strategy:

(1) Find the state with largest J and m_{j} and write it in terms of S, L, m_{s}, and m_{l}
(2) Apply the lowering operator $J_{-}=S_{-}+L_{-}$the needed number of times to create new states of J and m_{j} that are linear combinations of S, L, m_{s}, and m_{l}
(3) Use the orthogonality of $\mid J, m_{j}>$ states to find new states of J and m_{j} that are linear combinations of S, L, m_{s}, and m_{l}
(9) Using the states from steps 2 and 3 , find a linear combination of them that results in $\left\lvert\, S=\frac{1}{2}\right., L=1, m_{s}=\frac{1}{2}, m_{l}=0>$ expressed in terms of $\mid J, m_{j}>$ states

Problem: Express the state $\left\lvert\, S=\frac{1}{2}\right., L=1, m_{s}=\frac{1}{2}, m_{l}=0>$ as a linear combination of eigenstates of total angular momentum J and projection m_{j}.

We use the simple rules for adding two angular momenta to find the possible results for this system to be

$$
J=\frac{1}{2}, \frac{3}{2}, \quad m_{j}=-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \frac{3}{2} .
$$

Our state is then

$$
\left|J=\frac{3}{2}, m_{j}=\frac{3}{2}>=\right| S=\frac{1}{2}, L=1, m_{s}=\frac{1}{2}, m_{l}=1>.
$$

Written more succinctly:

$$
\left|J=\frac{3}{2}, m_{j}=\frac{3}{2}>=\right| m_{s}=\frac{1}{2}, m_{l}=1>.
$$

Problem: Express the state $\left\lvert\, S=\frac{1}{2}\right., L=1, m_{s}=\frac{1}{2}, m_{l}=0>$ as a linear combination of eigenstates of total angular momentum J and projection m_{j}.

The lowering operator for J is

$$
J_{-}\left|J, m_{j}>=\hbar \sqrt{J(J+1)-m_{j}\left(m_{j}-1\right)}\right| J, m_{j}-1>
$$

and those for S and L are analogous. Applying $J_{-}=S_{-}+L_{-}$to the state we previously found:

$$
\begin{gathered}
J_{-}\left|J=\frac{3}{2}, m_{j}=\frac{3}{2}>=\left(S_{-}+L_{-}\right)\right| m_{s}=\frac{1}{2}, m_{l}=1> \\
\left|J=\frac{3}{2}, m_{j}=\frac{1}{2}>=\sqrt{\frac{1}{3}}\right| m_{s}=\frac{-1}{2}, \left.m_{l}=1>+\sqrt{\frac{2}{3}} \right\rvert\, m_{s}=\frac{1}{2}, m_{l}=0>
\end{gathered}
$$

Problem: Express the state $\left\lvert\, S=\frac{1}{2}\right., L=1, m_{s}=\frac{1}{2}, m_{l}=0>$ as a linear combination of eigenstates of total angular momentum J and projection m_{j}.

By orthogonality of $\mid J, m_{j}>$ states, we know that

$$
\left|J=\frac{3}{2}, m_{j}=\frac{1}{2}>=\sqrt{\frac{1}{3}}\right| m_{s}=\frac{-1}{2}, \left.m_{l}=1>+\sqrt{\frac{2}{3}} \right\rvert\, m_{s}=\frac{1}{2}, m_{l}=0>
$$

is orthogonal to

$$
\left|J=\frac{1}{2}, m_{j}=\frac{1}{2}>=\alpha\right| m_{s}=\frac{-1}{2}, m_{l}=1>+\beta \left\lvert\, m_{s}=\frac{1}{2}\right., m_{l}=0>.
$$

Solving

$$
<J=\frac{3}{2}, \left.m_{j}=\frac{1}{2} \right\rvert\, J=\frac{1}{2}, m_{j}=\frac{1}{2}>=0
$$

we find

$$
\alpha=-\beta \sqrt{2} .
$$

Problem: Express the state $\left\lvert\, S=\frac{1}{2}\right., L=1, m_{s}=\frac{1}{2}, m_{l}=0>$ as a linear combination of eigenstates of total angular momentum J and projection m_{j}.

The $\mid J, m_{j}>$ states are normalized. Thus:

$$
<J=\frac{1}{2}, \left.m_{j}=\frac{1}{2} \right\rvert\, J=\frac{1}{2}, m_{j}=\frac{1}{2}>=\alpha^{2}+\beta^{2}=1
$$

$$
2 \beta^{2}+\beta^{2}=1
$$

$$
\beta=\sqrt{\frac{1}{3}}
$$

Problem: Express the state $\left\lvert\, S=\frac{1}{2}\right., L=1, m_{s}=\frac{1}{2}, m_{l}=0>$ as a linear combination of eigenstates of total angular momentum J and projection m_{j}.

We finally have the following two states

$$
\begin{aligned}
& \left|J=\frac{3}{2}, m_{j}=\frac{1}{2}\right\rangle=\sqrt{\frac{1}{3}}\left|m_{s}=\frac{-1}{2}, m_{l}=1>+\sqrt{\frac{2}{3}}\right| m_{s}=\frac{1}{2}, m_{l}=0>, \\
& \left|J=\frac{1}{2}, m_{j}=\frac{1}{2}>=-\sqrt{\frac{2}{3}}\right| m_{s}=\frac{-1}{2}, \left.m_{l}=1>+\sqrt{\frac{1}{3}} \right\rvert\, m_{s}=\frac{1}{2}, m_{l}=0>.
\end{aligned}
$$

Multiply the top state by the $\sqrt{2}$ and add it to the bottom state to find our answer

$$
\left|m_{s}=\frac{1}{2}, m_{l}=0>=\sqrt{\frac{2}{3}}\right| J=\frac{3}{2}, \left.m_{j}=\frac{1}{2}>+\sqrt{\frac{1}{3}} \right\rvert\, J=\frac{1}{2}, m_{j}=\frac{1}{2}>.
$$

(1) Problem 1: Clebsch-Gordan Coefficients

(2) Problem 2: Zeeman Effect

Problem: An electron is in an $I=1$ state of a hydrogen atom. It experience a spin-orbit interaction

$$
V_{\text {s.o. }}=\alpha \vec{L} \cdot \vec{S}
$$

and feels an external magnetic field

$$
V_{b}=\mu \vec{B} \cdot(\vec{L}+2 \vec{S})
$$

Find the energy eigenvalues.

Step 1: $V_{\text {s.o. }}$ in the $\left|j, m_{j}\right\rangle$ basis

Using $\vec{J}=\vec{L}+\vec{S}$,

$$
\begin{aligned}
V_{\text {s.o. }} & =\frac{\alpha}{2}\left(|\vec{J}|^{2}-|\vec{L}|^{2}-|\vec{S}|^{2}\right) \\
& =\frac{\alpha \hbar^{2}}{2}\left(j(j+1)-\frac{11}{4}\right)
\end{aligned}
$$

$$
=\frac{\alpha \hbar^{2}}{2}\left(\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & & 1 & & \\
& & & & -2 & \\
& & & & & -2
\end{array}\right)
$$

where $\left|\frac{3}{2}, \frac{3}{2}\right\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),\left|\frac{3}{2}, \frac{1}{2}\right\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),\left|\frac{3}{2}, \frac{-1}{2}\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),\left|\frac{3}{2}, \frac{-3}{2}\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right),\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right),\left|\frac{1}{2}, \frac{-1}{2}\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$

Step 2: V_{b} in the $\left|m_{l}, m_{s}\right\rangle$ basis

Step 3: Finding the Clebsch-Gordan Matrix

$$
\left|j, m_{j}\right\rangle=\left\langle m_{l}, m_{s} \mid j, m_{j}\right\rangle\left|m_{l}, m_{s}\right\rangle=C\left|m_{l}, m_{s}\right\rangle
$$

$$
C=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & \sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & \sqrt{\frac{2}{3}} & -\sqrt{\frac{1}{3}} & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt{\frac{1}{3}} & -\sqrt{\frac{2}{3}} & 0
\end{array}\right)
$$

Note that $C^{T} C=1$

Step 4: Transforming V_{b} from $\left|m_{l}, m_{s}\right\rangle$ to the $\left|j, m_{j}\right\rangle$ basis

$$
\begin{aligned}
\left(V_{b}\right)_{j, m_{j}} & =C V_{b} C^{T} \\
& =\mu \hbar B\left(\begin{array}{cccccc}
2 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{2}{3} & 0 & 0 & \frac{-\sqrt{2}}{3} & 0 \\
0 & 0 & \frac{-2}{3} & 0 & 0 & \frac{-\sqrt{2}}{3} \\
0 & 0 & 0 & -2 & 0 & 0 \\
0 & \frac{-\sqrt{2}}{3} & 0 & 0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{-\sqrt{2}}{3} & 0 & 0 & \frac{-1}{3}
\end{array}\right)
\end{aligned}
$$

Step 5: Full Hamiltonian in the $\left|j, m_{j}\right\rangle$ basis

$$
\begin{aligned}
& H=V_{\text {s.o. }}+\left(V_{b}\right)_{j, m_{j}} \\
& =\left(\begin{array}{c}
\frac{\alpha \hbar^{2}}{2}+2 \mu \hbar B \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right. \\
& \begin{array}{cc}
0 & 0 \\
\frac{\alpha \hbar^{2}}{2}+\frac{2 \mu \hbar B}{3} & 0 \\
0 & \frac{\alpha \hbar^{2}}{2}-\frac{2 \mu \hbar B}{3} \\
0 & 0 \\
\frac{-\sqrt{2} \mu \hbar B}{3} & 0 \\
0 & \frac{-\sqrt{2} \mu \hbar B}{3}
\end{array} \\
& \begin{array}{c}
0 \\
0 \\
0 \\
\frac{\alpha \hbar^{2}}{2}-2 \mu \hbar B \\
0 \\
0
\end{array} \\
& \begin{array}{c}
0 \\
\frac{-\sqrt{2} \mu \hbar B}{3} \\
0 \\
0 \\
-\alpha \hbar^{2}+\frac{\mu \hbar B}{3} \\
0
\end{array} \\
& \left.\begin{array}{c}
0 \\
0 \\
\frac{-\sqrt{2} \mu \hbar B}{3} \\
0 \\
0 \\
-\alpha \hbar^{2}-\frac{\mu \hbar B}{3}
\end{array}\right)
\end{aligned}
$$

Eigenvalues

$$
\begin{aligned}
& \epsilon_{1}=\frac{\alpha \hbar^{2}}{2}+2 \mu \hbar B \\
& \epsilon_{2}=\frac{\alpha \hbar^{2}}{2}-2 \mu \hbar B \\
& \epsilon_{3}=\frac{-\alpha \hbar^{2}}{4}+\frac{\mu \hbar B}{2}+\sqrt{\left(\frac{\alpha \hbar^{2}}{4}+\frac{\mu \hbar B}{2}\right)^{2}+\frac{\alpha^{2} \hbar^{4}}{2}} \\
& \epsilon_{4}=\frac{-\alpha \hbar^{2}}{4}+\frac{\mu \hbar B}{2}-\sqrt{\left(\frac{\alpha \hbar^{2}}{4}+\frac{\mu \hbar B}{2}\right)^{2}+\frac{\alpha^{2} \hbar^{4}}{2}} \\
& \epsilon_{5}=\frac{-\alpha \hbar^{2}}{4}-\frac{\mu \hbar B}{2}+\sqrt{\left(\frac{\alpha \hbar^{2}}{4}-\frac{\mu \hbar B}{2}\right)^{2}+\frac{\alpha^{2} \hbar^{4}}{2}} \\
& \epsilon_{6}=\frac{-\alpha \hbar^{2}}{4}-\frac{\mu \hbar B}{2}-\sqrt{\left(\frac{\alpha \hbar^{2}}{4}-\frac{\mu \hbar B}{2}\right)^{2}+\frac{\alpha^{2} \hbar^{4}}{2}}
\end{aligned}
$$

Eigenvalues Plot

