Chapter 9 - Homework Solutions

1. As part of an elaborate calculation using Fermi's Golden rule, you find yourself needing to calculate the following matrix element squared

$$
\left.\left|\mathcal{M}_{f i}\right|^{2}=\left|\langle f| \Psi_{A}^{\dagger}(\vec{r}) \Psi_{B}(\vec{r})\right| i\right\rangle\left.\right|^{2} .
$$

The initial state i is composed of N_{B} particles of type B, which are all in the same singleparticle state of momentum \vec{k}_{B}. The final state $|f\rangle$ is composed of $N_{B}-1$ particles of type B, in the same level \vec{k}_{B}, along with one particle of type A with momentum \vec{k}_{A}. The momentum states are defined within some large volume V.
(a) Find $\left|\mathcal{M}_{f i}\right|^{2}$. The momentum states are defined within some large volume V.
(b) Repeat but in this case assume the N_{B} particles are all in different momentum states, $\vec{k}_{n}, n=1 \cdots N_{B}$, with the same values in the final state, with the exception of \vec{k}_{1}, which is missing.

Solution:

a)

$$
\begin{aligned}
\mathcal{M} & =\langle 0| \frac{a_{A}\left(\vec{k}_{A}\right)\left(a_{B}\left(\vec{k}_{B}\right)\right)^{N_{B}-1}}{\sqrt{\left(N_{B}-1\right)!}} \Psi_{A}^{\dagger}(\vec{r}) \Psi_{B}(\vec{r}) \frac{\left(a_{B}^{\dagger}\right)^{N_{B}}}{\sqrt{N_{B}!}}|0\rangle \\
& =\frac{e^{i \vec{k}_{B} \cdot \vec{r}-i \vec{k}_{A} \cdot \vec{r}}}{V \sqrt{N_{B}!\left(N_{B}-1\right)!}}\langle 0| a_{A}\left(\vec{k}_{A}\right) a_{A}^{\dagger}\left(\vec{k}_{A}\right)\left(a_{B}(\vec{k})^{N_{B}}\right)\left(a_{B}^{\dagger}(\vec{k})\right)^{N_{B}}|0\rangle \\
& =\frac{N_{B}!e^{i \vec{k}_{B} \cdot \vec{r}-i \vec{k}_{A} \cdot \vec{r}}}{V \sqrt{N_{B}!\left(N_{B}-1\right)!}} \\
& =\frac{\sqrt{N_{B}}}{V} e^{i \vec{k}_{B} \cdot \vec{r}-i \vec{k}_{A} \cdot \vec{r}} \\
|\mathcal{M}|^{2} & =\frac{N_{B}}{V^{2}} .
\end{aligned}
$$

b)

$$
\mathcal{M}=\langle 0|\left[\prod_{m=2 \cdots N_{B}} a_{B}\left(\vec{k}_{m}\right) a_{A}\left(\vec{k}_{A}\right)\right] \Psi_{A}^{\dagger}(\vec{r}) \Psi_{B}(\vec{r})\left[\prod_{m=1 \cdots N_{B}} a_{B}^{\dagger}\left(\vec{k}_{m}\right)\right]|0\rangle
$$

One can see that after expanding $\Psi_{B}(\vec{r})$ in momentum states that only the \vec{k}_{1} term contributes,
and that when expanding $\Psi_{A}(\vec{r})$ that only the \vec{k}_{A} term contributes. Thus,

$$
\begin{aligned}
\mathcal{M} & =\frac{e^{i \vec{k}_{B} \cdot \vec{r}-i \vec{k}_{A} \cdot \vec{r}}}{V}\langle 0|\left[\prod_{m=2 \cdots N_{B}} a_{B}\left(\vec{k}_{m}\right) a_{A}\left(\vec{k}_{A}\right)\right] a_{A}^{\dagger}\left(\vec{k}_{A}\right) a_{B}\left(\vec{k}_{1}\right)\left[\prod_{m=1 \cdots N_{B}} a_{B}^{\dagger}\left(\vec{k}_{m}\right)\right]|0\rangle \\
& =\frac{e^{i \vec{k}_{B} \cdot \vec{r}-i \vec{k}_{A} \cdot \vec{r}}}{\sqrt{V}} \\
|\mathcal{M}|^{2} & =\frac{1}{V^{2}} .
\end{aligned}
$$

If one summed over all the $|\mathcal{M}|^{2}$ for all final states with different choices of which momenta \vec{k}_{i} were missing, then the answer would have been N / V.
2. Consider b-particles of mass m confined by a one-dimensional harmonic oscillator potential characterized by a frequency ω. The b particles interact with massless and spinless a-particles through their respective field operators,

$$
H_{\mathrm{int}}=g \int d x \Psi^{\dagger}(x) \Phi(x) \Psi(x)
$$

where Φ and Ψ are the field operators for the a-particles and b-particles respectively. Assume the b particles are sufficiently heavy to ignore their recoil energy.

$$
\begin{aligned}
\Phi(x) & =\frac{1}{\sqrt{L}} \sum_{k} \frac{1}{\sqrt{E_{k}}}\left(e^{-i k x} a_{k}^{\dagger}+e^{i k x} a_{k}\right) \\
\Psi^{\dagger}(x) & =\frac{1}{\sqrt{L}} \sum_{k} e^{-i k x} b_{k}^{\dagger}
\end{aligned}
$$

(a) What is the dimension of g ?
(b) What is the decay rate of a b particle in the first excited state.

Solution:

a) Units of Φ are $1 / \sqrt{L E}$, units of Ψ are $1 / \sqrt{L}$.

$$
\begin{aligned}
{[E] } & =[g][L] \frac{1}{\left[L^{3 / 2}\right]\left[E^{1 / 2}\right]} \\
{[g] } & =[E]^{3 / 2}[L]^{1 / 2}
\end{aligned}
$$

b)

$$
\begin{aligned}
\Gamma & \left.=\frac{2 \pi}{\hbar}|\langle i| V| f\right\rangle\left.\right|^{2} \delta(\hbar \omega-\hbar k c), \\
\langle n=0, k| V|n=1\rangle & =g \int d x \psi_{1}^{*}(x)\langle k| \Phi(x)|0\rangle \psi_{0}(x) \\
& =g \int d x \psi_{1}^{*}(x) \psi_{0}(x) \frac{1}{\sqrt{L}} \frac{1}{\sqrt{E_{k}}} e^{i k x} \\
e^{i k x} & =e^{i k\left(b+b^{\dagger}\right) \sqrt{\hbar / 2 m \omega}}=e^{i k \sqrt{\hbar / 2 m \omega} b^{\dagger}} e^{i k \sqrt{\hbar / 2 m \omega} b} e^{-k^{2} \hbar / 4 m \omega} .
\end{aligned}
$$

Now, use the fact that $e^{i A b}|0\rangle=|0\rangle$, which you can see by expanding the exponential. Then
expand the other exponential but only keep one power of b^{\dagger} as all other powers give zero. Then,

$$
\begin{aligned}
\langle 1| e^{i k x}|0\rangle & =i k \sqrt{\frac{\hbar}{2 m \omega}} e^{-\hbar k^{2} / 4 m \omega}, \\
\langle n=0, k| V|n=1\rangle & =\frac{g}{\sqrt{L E_{k}}} i k \sqrt{\frac{\hbar}{2 m \omega}} e^{-\hbar k^{2} / 4 m \omega}, \\
\Gamma_{k} & =\frac{g^{2}}{L E_{k}} \frac{\hbar k^{2}}{2 m \omega} e^{-\hbar k^{2} / 2 m \omega} \frac{2 \pi}{\hbar} \delta(\hbar \omega-\hbar k c), \\
\Gamma & =L \int_{0}^{\infty} \frac{d k}{\pi} \frac{g^{2} \pi k^{2}}{L E_{k} m \omega} e^{-\hbar k^{2} / 2 m \omega} \delta(\hbar c k-\hbar \omega) \\
& =\frac{g^{2} k^{2}}{m \hbar c k \hbar c \omega} e^{-\hbar k^{2} / 2 m \omega} \\
& =\frac{g^{2}}{m \hbar^{2} c^{3}} e^{-\hbar k^{2} / 2 m \omega} .
\end{aligned}
$$

Checking units, (use the fact that $[\hbar]=[E][t]$ and $\left[m c^{2}\right]=[E]$)

$$
[\Gamma]=[g]^{2} \frac{1}{\left[E^{3}\right]\left[T^{2}\right][L] /[T]}=\frac{E^{3} L}{\left[E^{3}\right]\left[T^{2}\right][L] /[T]}=\frac{1}{[T]} \checkmark
$$

3. Show that Eq. (??) is satisfied by using the electric and magnetic fields defined in Eq. (??). Note: After squaring \vec{E} and \vec{B}, ignore any cross terms when you involving rapid oscillations in time, i.e. those that behave as $e^{ \pm 2 i E_{k} t / \hbar}$
From notes, the 2 equations are

$$
\begin{equation*}
\int d^{3} r \frac{\vec{E}^{2}+\vec{B}^{2}}{8 \pi}=\sum_{\vec{k}, s} E_{k}\left(a_{\vec{k}, s}^{\dagger} a_{\vec{k}, s}+\frac{1}{2}\right) \tag{0.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{A}(\vec{r}, t)=\sqrt{\frac{2 \pi \hbar^{2} c^{2}}{V}} \sum_{k, s} \frac{1}{\sqrt{E_{k}}}\left(\vec{\epsilon}_{s}(\vec{k}) e^{i \vec{k} \cdot \vec{r}-i E_{k} t / \hbar} a_{k, s}+\vec{\epsilon}_{s}^{*}(\vec{k}) e^{-i \vec{k} \cdot \vec{r}+i E_{k} t / \hbar} a_{k, s}^{\dagger}\right) \tag{0.2}
\end{equation*}
$$

Solution:

Let

$$
\begin{aligned}
\frac{1}{c} \frac{\partial \vec{A}}{\partial t} & =\vec{E}
\end{aligned}=\sqrt{\frac{2 \pi}{V}} \sum_{k} E_{k}^{1 / 2}\left(\vec{\epsilon}_{s}(\vec{k}) a_{k, s} e^{i \vec{k} \cdot \vec{r}-i E_{k} t / \hbar}+\vec{\epsilon}_{s}^{*}(\vec{k}) a_{k, s}^{\dagger} e^{-i \vec{k} \cdot \vec{r}+i E_{k} t \hbar}\right), ~\left(\vec{B}=\nabla \times \vec{A}=-i \sqrt{\frac{2 \pi}{V}} \sum_{k} E_{k}^{1 / 2}\left(\left(\vec{\epsilon}_{s}(\vec{k}) \times \hat{k}\right) a_{k, s} e^{i \vec{k} \cdot \vec{r}-i E_{k} t / \hbar}-\left(\vec{\epsilon}_{s}^{*}(\vec{k}) \times \hat{k}\right) a_{k, s}^{\dagger} e^{-i \vec{k} \cdot \vec{r}+i E_{k} t / \hbar}\right), ~ l\right.
$$

The energy density is

$$
\int d^{3} r \frac{|\vec{E}|^{2}+|\vec{B}|^{2}}{8 \pi}=2 \pi \sum_{k k^{\prime}} \frac{1}{V} \int d^{3} r e^{i\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{r}}\left(E_{k} E_{k^{\prime}}\right)^{1 / 2}\left[\vec{\epsilon}_{s}^{*} \cdot \vec{\epsilon}_{s^{\prime}}+\left(\hat{k} \cdot \vec{\epsilon}_{s}^{*}\right)\left(\hat{k}^{\prime} \cdot \vec{\epsilon}_{s}^{\prime}\right)\right]\left(a_{k}^{\dagger} a_{k^{\prime}}+a_{k} a_{k^{\prime}}^{\dagger}\right)
$$

Note that terms that behave as $e^{ \pm 2 i E t / \hbar}$ have been left out.
Use the facts that

$$
\frac{1}{V} \int d^{3} r e^{i\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{r}}=\delta_{k k^{\prime}}
$$

and

$$
\begin{aligned}
\vec{\epsilon}_{s} \cdot \vec{\epsilon}_{s^{\prime}} & =\delta_{s s^{\prime}}, \\
\left(\hat{k} \times \vec{\epsilon}_{s}\right) \cdot\left(\hat{k} \times \vec{\epsilon}_{s^{\prime}}\right) & =\delta_{s s^{\prime}},
\end{aligned}
$$

to obtain

$$
\begin{aligned}
\int d^{3} r \frac{|\vec{E}|^{2}+|\vec{B}|^{2}}{8 \pi} & =\sum_{k} \frac{2 \pi}{8 \pi} 2 E_{k}\left(a_{k}^{\dagger} a_{k}+a_{k} a_{k}^{\dagger}\right) \\
& =\sum_{k} E_{k}\left(a_{k}^{\dagger} a_{k}+\frac{1}{2}\right)
\end{aligned}
$$

4. A proton in a nucleus decays from an excited state to its ground state by emitting a photon of momentum $\hbar \vec{k}$ and polarization $\vec{\epsilon}_{s}$. The matrix element describing the decay is

$$
\langle 0, k, s| V|1\rangle=\beta \vec{\epsilon}_{s} \cdot \int d^{3} r \frac{e^{-i \vec{k} \cdot \vec{r}}}{\sqrt{V}}\left(\phi_{0}^{*}(\vec{r}) \nabla \phi_{1}(\vec{r})-\left[\nabla \phi_{0}^{*}(\vec{r})\right] \phi_{1}(\vec{r})\right) .
$$

The factor β absorbed all the various factors involved in defining the vector field in Eq. (??). Assume the ground and excited states are modeled with a three-dimensional harmonic oscillator of frequency ω. If the excited state is in the first level of a harmonic oscillator and has an angular momentum projection m, what is the shape ($\theta \phi$ dependence) of the angular distribution of the photons, $d \Gamma / d \Omega$, for each m. Assume that the wavelength of the photon is sufficiently long that the phase $e^{i \vec{k} \cdot \vec{r}} \approx 1$. Remember that the two polarizations of the photon must be perpendicular to \vec{k}. You need only calculate the angular shape of the distribution ignore the prefactors.
Some help: The first excited state of the harmonic oscillator is three-fold degenerate. In the Cartesian basis these have the form $\sim x \phi_{0}, y \phi_{0}$ and $z \phi_{0}$, where ϕ_{0} is the ground-state wave function. These can be mapped to three states that are eigenstates of angular momentum, $\ell=1 ; m=1,0,-1$ as discussed in Chapter ??. The wave functions of states with $m= \pm 1$ have to have an angular dependence given by $Y_{1 \pm 1} \sim \sin \theta e^{ \pm i \phi}$, whereas the wavefunction for $m=0$ has to be proportional to $Y_{10} \sim \cos \theta$. Using the fact that $r \cos \theta=z$ and $r \sin \theta e^{ \pm i \phi}=x \pm i y$, the $m= \pm 1$ wave functions are proportional to $x \pm i y$, whereas the $m=0$ wave is proportional to z.

Solution:

$$
\begin{aligned}
i \hbar \partial_{z} & =\sqrt{\frac{\hbar m \omega}{2}} i\left(a_{z}-a_{z}^{\dagger}\right), \\
\langle n=0| \partial_{z}\left|n_{z}=1\right\rangle & =\sqrt{\frac{m \omega}{2 \hbar}}, \\
|n=1, m=0\rangle & =\left|n_{x}=0, n_{y}=0, n_{z}=1\right\rangle, \\
|n=1, m= \pm 1\rangle & =\frac{1}{\sqrt{2}}\left|n_{x}=1, n_{y}=n_{z}=0\right\rangle \pm i \frac{1}{\sqrt{2}}\left|n_{x}=n_{z}=0, n_{y}=1\right\rangle, \\
\langle n=0, m=0| \partial_{i}|n=1, m=0\rangle & =\sqrt{\frac{m \omega}{2 \hbar}} \delta_{i z}, \\
\langle n=0, m=0| \partial_{i}|n=1, m= \pm 1\rangle & =\sqrt{\frac{m \omega}{2 \hbar}}\left(\frac{1}{\sqrt{2}} \delta_{i x}+i \frac{1}{\sqrt{2}} \delta_{i y}\right) \\
\vec{\epsilon} \cdot\langle n=0| \vec{\nabla}|n=1, m=0\rangle & =\sqrt{\frac{m \omega}{2 \hbar}} \epsilon_{z}, \\
\vec{\epsilon} \cdot\langle n=0| \vec{\nabla}|n=1, m= \pm 1\rangle & =\sqrt{\frac{m \omega}{2 \hbar}} \frac{1}{\sqrt{2}}\left(\epsilon_{x}+i \epsilon_{y}\right)
\end{aligned}
$$

The $n=1, m=0$ decays go as

$$
\sum_{s}\left(\vec{\epsilon}_{s}(\vec{k}) \cdot \hat{z}\right)^{2}=1-(\hat{k} \cdot \hat{z})^{2}=\sin ^{2} \theta
$$

The $n=1, m= \pm 1$ decays go as

$$
\begin{aligned}
\frac{1}{2} \sum_{s}\left|\vec{\epsilon}_{s} \cdot(\hat{x} \pm i \hat{y})\right|^{2} & =1-\frac{|\hat{k} \cdot(\hat{x} \pm i \hat{y})|^{2}}{2} \\
& =1-\frac{1}{2}\left|\frac{k_{x} \pm i k_{y}}{k}\right|^{2} \\
& =1-\frac{1}{2} \sin ^{2} \theta=\frac{1}{2}+\frac{\cos ^{2} \theta}{2} .
\end{aligned}
$$

You may note that if you sum over all 3 polarizations, the angular dependence is uniform.
5. A spinless particle of mass M and charge e is in the first excited state of a three-dimensional harmonic oscillator characterized by a frequency ω. Assume the particle is in the Cartesian state of a harmonic oscillator with $n_{z}=1$, i.e. $m=0$. Using the interaction

$$
H_{\mathrm{int}}=\vec{j} \cdot \vec{A} / c
$$

(a) Calculate the decay rate of the charged particle into the ground state of the oscillator in the dipole approximation.
(b) Calculate $d \Gamma / d \Omega$ as a function of the emission angles of the photon, θ and ϕ.
(c) In terms of the unit vectors $\hat{k}, \hat{\theta}$ and $\hat{\phi}$, the two polarization vectors which are allowed for emission of a photon at an angle θ, ϕ are $\hat{\theta}$ and $\hat{\phi}$. For each of these two polarization vectors, calculate $d \Gamma_{s} / d \Omega$, the probability of decaying via emission of a photon emitted in the θ, ϕ direction with polarization s.

Solution:

From lecture notes,

$$
\Gamma=\frac{4 e^{2} k}{3 \hbar m^{2} c^{2}}|\mathcal{M}|^{2}
$$

In dipole approximation,

$$
\begin{aligned}
\mathcal{M}_{z} & =i m \omega \int d^{3} r \psi_{f}(\vec{r}) z \psi_{i}(\vec{r}), \\
\psi_{f} & =|0\rangle, \quad \psi_{i}=a_{z}^{\dagger}|0\rangle \\
z & =\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right), \\
\mathcal{M}_{z} & =i m \omega \sqrt{\frac{\hbar}{2 m \omega}}=i \sqrt{\hbar m \omega / 2} \\
\Gamma & =\frac{4 e^{2} k}{3 \hbar m^{2} c^{2}} \hbar m \omega / 2 \\
& =\frac{2 e^{2} \omega^{2}}{3 m c^{3}}
\end{aligned}
$$

b) From lecture notes,

$$
\begin{aligned}
\frac{d \Gamma}{d \Omega} & =\frac{e^{2} k}{2 \pi \hbar m^{2} c^{2}}\left\{|\mathcal{M}|^{2}-|\hat{k} \cdot \mathcal{M}|^{2}\right\} \\
& =\frac{e^{2} k}{2 \pi \hbar m^{2} c^{2}} \frac{\hbar m \omega}{2}\left(1-(\hat{k} \cdot \hat{z})^{2}\right) \\
& =\frac{e^{2} \omega^{2}}{4 \pi m c^{3}} \sin ^{2} \theta .
\end{aligned}
$$

c)

$$
\begin{aligned}
\vec{\epsilon} & =(\overrightarrow{\mathcal{M}}-\hat{k}(\hat{k} \cdot \overrightarrow{\mathcal{M}})) /|\overrightarrow{\mathcal{M}}| \\
\overrightarrow{\mathcal{M}} & =|\overrightarrow{\mathcal{M}}| \hat{z} \\
\frac{d \Gamma_{s}}{d \Omega_{k}} & =\frac{e^{2} k}{2 \pi \hbar m^{2} c^{2}}|\overrightarrow{\mathcal{M}}|^{2}\left(\hat{M} \cdot \hat{\epsilon}_{s}\right)^{2} \\
& =\frac{e^{2} k}{2 \phi \hbar m^{2} c^{2}}|\overrightarrow{\mathcal{M}}|^{2}\left(\hat{z} \cdot \hat{\epsilon}_{s}\right)^{2} \\
\hat{z} & =\hat{r} \cos \theta-\hat{\theta} \sin \theta \\
\frac{d \Gamma_{\hat{\theta}}}{d \Omega_{k}} & =\frac{e^{2} k|\overrightarrow{\mathcal{M}}|^{2}}{2 \pi \hbar m^{2} c^{2}} \sin ^{2} \theta=\frac{e^{2} \omega^{2}}{4 \pi m c^{3}} \sin ^{2} \theta \\
\frac{d \Gamma_{\hat{\phi}}}{d \Omega_{k}} & =0
\end{aligned}
$$

6. Again consider a spinless particle of mass M and charge $e \mathrm{n}$ the first excited state of a threedimensional harmonic oscillator characterized by a frequency ω. However, this time assume the charged particle is originally in a state with angular momentum projection $m=+1$ along the z axis. Using the interaction

$$
H_{\mathrm{int}}=\vec{j} \cdot \vec{A} / c
$$

and applying the dipole approximation,
(a) Find the decay rate Γ of the first excited state.
(b) Find the differential decay rate $d \Gamma / d \Omega$.
(c) Describe the polarization of a photon emitted in the \hat{x} direction.
(d) Describe the polarization vector of a particle emitted in the \hat{z} direction.

Solution:

a) Like previous problem but replace \hat{z} with $(\hat{x}+i \hat{y}) / \sqrt{2}$.

$$
\overrightarrow{\mathcal{M}}=-i \frac{\sqrt{\hbar m \omega}}{2}(\hat{x}+i \hat{y})
$$

So, $|\overrightarrow{\mathcal{M}}|^{2}$ is the same and

$$
\Gamma=\frac{2 e^{2} \omega^{2}}{3 m c^{3}}
$$

b)

$$
\begin{aligned}
\frac{d \Gamma}{d \Omega_{k}} & =\frac{e^{2} k}{2 \pi \hbar m^{2} c^{2}}\left\{|\overrightarrow{\mathcal{M}}|^{2}-|\hat{k} \cdot \overrightarrow{\mathcal{M}}|^{2}\right\} \\
& =\frac{e^{2} \omega^{2}}{4 \pi m c^{3}}\left\{1-\frac{1}{2}|\hat{k} \cdot(\hat{x}+i \hat{y})|^{2}\right\} \\
& =\frac{e^{2} \omega^{2}}{41 m c^{3}}\left\{1-\frac{1}{2} \sin ^{2} \theta\right\}
\end{aligned}
$$

c)

$$
\begin{aligned}
\vec{\epsilon} & \sim \frac{\overrightarrow{\mathcal{M}}}{\mid \overrightarrow{\mathcal{M}}}-\frac{\hat{k}(\hat{\mathcal{M}} \cdot \hat{k})}{|\overrightarrow{\mathcal{M}}|} \\
& \sim-\frac{\hat{x}+i \hat{y}}{\sqrt{2}}+\frac{\hat{k}(\hat{k} \cdot(\hat{x}+i \hat{y}))}{\sqrt{2}} .
\end{aligned}
$$

If $\hat{k}=\hat{x}$,

$$
\begin{aligned}
& \vec{\epsilon} \sim-\frac{(\hat{x}+i \hat{y})}{\sqrt{2}}+\frac{\hat{x}}{\sqrt{2}}=i \frac{\hat{y}}{\sqrt{2}} \\
& \vec{\epsilon}=\hat{y} \quad \text { within a phase. }
\end{aligned}
$$

d)

$$
\begin{aligned}
\vec{\epsilon} & \sim-\frac{(\hat{x}+i \hat{y})}{\sqrt{2}}-\hat{z}(\hat{z} \cdot(\hat{x}+i \hat{y}) \\
& =-\frac{\hat{x}+i \hat{y}}{\sqrt{2}} \\
\vec{\epsilon} & =\frac{\hat{x}+i \hat{y}}{\sqrt{2}} \quad \text { within a phase. }
\end{aligned}
$$

