Chapter 9 — Homework Solutions

1. As part of an elaborate calculation using Fermi’s Golden rule, you find yourself needing to
calculate the following matrix element squared

(Ml = [V () (R0 .

The initial state ¢ is composed of Np particles of type B, which are all in the same single-
particle state of momentum kp. The final state |f) is composed of Np—1 partlcles of type B,

in the same level kB, along with one particle of type A with momentum k4. The momentum
states are defined within some large volume V.

(a) Find |[My;]*. The momentum states are defined within some large volume V.

(b) Repeat but in this case assume the Np particles are all in different momentum states,
k:n, n =1--- Np, with the same values in the final state, with the exception of k:l, which
is missing.

Solution:
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One can see that after expanding ¥ p(7) in momentum states that only the k1 term contributes,



and that when expanding W 4(7) that only the k4 term contributes. Thus,
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If one summed over all the |[M]|? for all final states with different choices of which momenta k;
were missing, then the answer would have been N/V.



2. Consider b-particles of mass m confined by a one-dimensional harmonic oscillator potential
characterized by a frequency w. The b particles interact with massless and spinless a-particles
through their respective field operators,

Hiy = g/dx\IfT(x)CD(m)\If(x),

where ® and ¥ are the field operators for the a-particles and b-particles respectively. Assume
the b particles are sufficiently heavy to ignore their recoil energy.
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(a) What is the dimension of g7
(b) What is the decay rate of a b particle in the first excited state.

Solution:

a) Units of ® are 1/v/LE, units of ¥ are 1//L.
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Now, use the fact that €4°|0) = |0), which you can see by expanding the exponential. Then



expand the other exponential but only keep one power of b as all other powers give zero. Then,

: | h
<1|ezkx|0> — ik 5 e—hk2/4mw’

mw
g . T
=0,k|Vin=1)= ky/ [ames
(n Vin =1) = “=tk\ e
2 hk

2
:g__ 7hk2/2mw2_ﬂ-5 .
" LB 2mw p, O — fike),

I'=>~L — "M 2mes(hek — Fuw
/0 7r LEkmwe (e )

— ﬂeihk2/2mw
mhckhcw
2
_ 9 —hk? /2mw
mh2c3 ’

Checking units, (use the fact that [h] = [F][t] and [mc?] = [E])
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3. Show that Eq. (??) is satisfied by using the electric and magnetic fields defined in Eq. (?7).
Note: After squaring F and B, ignore any cross terms when you involving rapid oscillations

in time, i.e. those that behave as e*2/Fkt/h
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Note that terms that behave as eX2E4/" have been left out.

Use the facts that

= | &*r =F)T

and

= Ok,

.
= 533’ 5

gs'es’

(k x &) (kx &) =0,

to obtain

|2 52
[ EELIBE
81

2m
Z 2Ek(akmc + aka,t)
k s

1
= Z Ek(azak + 5)
k



4. A proton in a nucleus decays from an excited state to its ground state by emitting a photon
of momentum Ak and polarization €;. The matrix element describing the decay is
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The factor 5 absorbed all the various factors involved in defining the vector field in Eq.
(?77). Assume the ground and excited states are modeled with a three-dimensional harmonic
oscillator of frequency w. If the excited state is in the first level of a harmonic oscillator and
has an angular momentum projection m, what is the shape (f¢ dependence) of the angular
distribution of the photons, dI'/d(2, for each m. Assume that the wavelength of the photon is
sufficiently long that the phase ¢iF7 22 1. Remember that the two polarizations of the photon
must be perpendicular to k. You need only calculate the angular shape of the distribution —
ignore the prefactors.

Some help: The first excited state of the harmonic oscillator is three-fold degenerate. In the
Cartesian basis these have the form ~ z¢g, ypy and z¢y, where ¢, is the ground-state wave
function. These can be mapped to three states that are eigenstates of angular momentum,
¢ =1;m =1,0,—1 as discussed in Chapter ??. The wave functions of states with m = +1 have
to have an angular dependence given by Y;4; ~ sin #e**® whereas the wavefunction for m = 0
has to be proportional to Y;o ~ cos@. Using the fact that 7 cos = z and 7 sin fe**® = x + iy,
the m = 4+1 wave functions are proportional to x 44y, whereas the m = 0 wave is proportional
to z.

Solution:
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The n =1, m = 0 decays go as
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You may note that if you sum over all 3 polarizations, the angular dependence is uniform.



5. A spinless particle of mass M and charge e is in the first excited state of a three-dimensional
harmonic oscillator characterized by a frequency w. Assume the particle is in the Cartesian
state of a harmonic oscillator with n, = 1, i.e. m = 0. Using the interaction
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(a) Calculate the decay rate of the charged particle into the ground state of the oscillator in
the dipole approximation.

(b) Calculate dI'/dS2 as a function of the emission angles of the photon, 8 and ¢.

(c) In terms of the unit vectors l%, 0 and 923, the two polarization vectors which are allowed
for emission of a photon at an angle 0, ¢ are 6 and gg For each of these two polarization
vectors, calculate dI's/dS2, the probability of decaying via emission of a photon emitted
in the 60, ¢ direction with polarization s.

Solution:
From lecture notes,
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b) From lecture notes,
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6. Again consider a spinless particle of mass M and charge e n the first excited state of a three-
dimensional harmonic oscillator characterized by a frequency w. However, this time assume
the charged particle is originally in a state with angular momentum projection m = +1 along
the z axis. Using the interaction

Hint = j . A/C,
and applying the dipole approximation,

(a) Find the decay rate I' of the first excited state.

(b) Find the differential decay rate dI'/dS2.

(c) Describe the polarization of a photon emitted in the & direction.

)

(d) Describe the polarization vector of a particle emitted in the Z direction.

Solution:
a) Like previous problem but replace 2 with ( + ig)/v/2.
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