Chapter 8 - Homework Solutions

1. Show that if the function $u_{\ell}(k r)$ is defined in terms of $R_{\ell}(r)$

$$
u_{\ell}(k r) \equiv r R_{\ell}(r),
$$

where R_{ℓ} is a solution to the radial Schrödinger equation

$$
\left\{-\frac{\hbar^{2}}{2 m} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{\hbar^{2}}{2 m} \frac{\ell(\ell+1)}{r^{2}}+V(r)\right\} R_{\ell}(r)=\frac{\hbar^{2} k^{2}}{2 m} R_{\ell}(r),
$$

that u_{ℓ} satisfies the differential equation,

$$
\left(\frac{d^{2}}{d x^{2}}+1\right) u_{\ell}(x)=\frac{\ell(\ell+1)}{x^{2}} u_{\ell}(x)+\beta(x) u_{\ell}(x),
$$

where β is proportional to the potential,

$$
\beta(x)=\frac{2 m}{\hbar^{2} k^{2}} V(x / k)
$$

Solution:

$$
\begin{gathered}
r\left\{-\frac{\hbar^{2}}{2 m} \frac{1}{r} \partial_{r}^{2} r+\frac{\hbar^{2}}{2 m} \frac{\ell(\ell+1)}{r^{2}}+V(r)\right\} \frac{u_{\ell}}{r}=\frac{\hbar^{2} k^{2}}{2 m} u_{\ell} \\
\left\{-\frac{\hbar^{2}}{2 m} \partial_{r}^{2}+\frac{\hbar^{2} \ell(\ell+1)}{2 m r^{2}}+V(r)\right\} u_{\ell}=\frac{\hbar^{2} k^{2}}{2 m} u_{\ell} \\
\left\{\partial_{r}^{2}+\frac{\ell(\ell+1)}{r^{2}}+\frac{2 m V(r)}{\hbar^{2}}\right\} u_{\ell}=k^{2} u_{\ell}(r), \\
x
\end{gathered}, k r, ~ \begin{array}{r}
\left.x-\partial_{x}^{2}+\frac{\ell(\ell+1)}{x^{2}}+\beta(x)\right\} u_{\ell}=u_{\ell} .
\end{array}
$$

2. Recurrence relations for Bessel functions provide you the ability to find forms for solutions at higher ℓ given you know the form for $\ell=0$ and $\ell=2$
(a) Show that in the case of zero potential that the solutions u_{ℓ} satisfy the recurrence relation.

$$
u_{\ell+1}(x)=\frac{(\ell+1)}{x} u_{\ell}(x)-\frac{d}{d x} u_{\ell}(x) .
$$

Use the expressions from the previous problem,

$$
\begin{equation*}
\left(\frac{d^{2}}{d x^{2}}+1\right) u_{\ell}(x)=\frac{\ell(\ell+1)}{x^{2}} u_{\ell}(x)+\beta(x) u_{\ell}(x) . \tag{1}
\end{equation*}
$$

(b) Show that this recurrence relation can be equivalently expressed as

$$
f_{\ell+1}(x)=\frac{\ell}{x} f_{\ell}(x)-\frac{d}{d x} f_{\ell}(x)
$$

where f_{ℓ} is a solution to the radial Schrödinger equation, $f_{\ell}(k r) \equiv u_{\ell}(k r) /(k r)$, which means that f_{ℓ} might be any linear combination of j_{ℓ} and n_{ℓ}.
(c) One can also show that a second recurrence relation is satisfied,

$$
f_{\ell-1}(x)=\frac{(\ell+1)}{x} f_{\ell}(x)+\frac{d}{d x} f_{\ell}(x) .
$$

Given this recurrence relation, plus the one from the previous problem, show that

$$
f_{\ell-1}(x)+f_{\ell+1}(x)=\frac{(2 \ell+1)}{x} f_{\ell}(x)
$$

(d) Using expressions for j_{0}, j_{1}, n_{0} and n_{1}, use recurrence relations to find expressions for j_{2} and n_{2}.
(e) Using the recurrence relations, show that $j_{\ell}(z)$ and $n_{\ell}(z)$ behave as z^{ℓ} and $z^{-(\ell+1)}$ respectively for $z \rightarrow 0$. Begin with the facts that $j_{0}(z)$ and $n_{0}(z)$ behave as z^{0} and z^{-1} respectively, and that they are even and odd functions in z.

Solution:

a) Begin by inserting the expression for $u_{\ell+1}$ to see if it satisfies the differential equation for $\ell+1$.

$$
\begin{aligned}
& {\left[-\partial_{x}^{2}+\frac{(\ell+1)(\ell+2)}{x^{2}}-1\right]\left[\frac{(\ell+1)}{x} u_{\ell}-\partial_{x} u_{\ell}\right] }=? 0 \\
& {\left[-\partial_{x}^{2}+\frac{(\ell)(\ell+1)}{x^{2}}-1+\frac{(2 \ell+2)}{x^{2}}\right]\left[\frac{(\ell+1)}{x} u_{\ell}-\partial_{x} u_{\ell}\right] }=? 0 \\
&-\frac{2(\ell+1)}{x^{3}} u_{\ell}+\frac{2(\ell+1)}{x^{2}} \partial_{x} u_{\ell}+\frac{(2 \ell+2)(\ell+1)}{x^{3}} u_{\ell} \\
&+\partial_{x}\left[\left(\frac{\ell(\ell+1)}{x^{2}}-1\right) u_{\ell}\right]-\left[\frac{\ell(\ell+1)}{x^{2}}-1\right] \partial_{x} u_{\ell}-\frac{2(\ell+1)}{x^{2}} \partial_{x} u_{\ell}=? 0
\end{aligned}
$$

Eq. (1) was used to eliminated the term with $\partial_{x}^{2} u_{\ell}$.

$$
\left[\frac{2(\ell+1)}{x^{2}}-\frac{2(\ell+1)}{x^{2}}\right] \partial_{x} u_{\ell}+\left[-\frac{2(\ell+1)}{x^{3}}+\frac{2(\ell+1)^{2}}{x^{3}}-\frac{2 \ell(\ell+1)}{x^{3}}\right] u_{\ell}=? 0
$$

One can see that both terms on the l.h.s. are zero.
b)

$$
\begin{aligned}
u_{\ell+1} & =\frac{\ell+1}{x} u_{\ell}-\partial_{x} u_{\ell} \\
x f_{\ell+1} & =\frac{(\ell+1)}{x} x f_{\ell}-\partial_{x}\left(x f_{\ell}\right) \\
f_{\ell}+1 & =\frac{\ell+1}{x} f_{\ell}-\frac{1}{x} f_{\ell}-\partial_{x} f_{\ell} \\
& =\frac{\ell}{x} f_{\ell}-\partial_{x} f_{\ell}
\end{aligned}
$$

c) Add the expressions for $f_{\ell-1}$ and $f_{\ell+1}$,

$$
\begin{aligned}
f_{\ell-1}+f_{\ell+1} & =\left(\frac{\ell}{x}+\frac{(\ell+1)}{x}\right) f_{\ell} \\
& =\frac{(2 \ell+1)}{x} f_{\ell} \quad \checkmark
\end{aligned}
$$

d) Use the relation:

$$
\begin{aligned}
& f_{\ell-1}+f_{\ell+1}=\frac{(2 \ell+1)}{x} f_{\ell} \\
& \quad f_{\ell+1}=\frac{(2 \ell+1)}{x} f_{\ell}-f_{\ell-1} \\
& j_{2}=-j_{0}+\frac{3}{x} j_{1} \\
& =-\frac{\sin x}{x}-\frac{3}{x^{2}} \cos x+\frac{3}{x^{2}} \sin x \\
& n_{2}=-n_{0}+\frac{3}{x} n_{1} \\
& =\frac{\cos x}{x}-\frac{3}{x^{3}} \cos x-\frac{3}{x^{2}} \sin x
\end{aligned}
$$

e) Start with low z behavior for $j_{0}(z)$ and $n_{0}(z)$.

$$
j_{0} \sim z^{0}, \quad n_{0} \sim z^{-1}, f_{\ell+1} \quad=\frac{\ell}{z} f_{\ell}-\frac{d}{d z} f_{\ell}
$$

Assume $j_{\ell} \sim z^{\ell}$ for some ℓ.

$$
\begin{aligned}
j_{\ell+1} & =\frac{\ell}{z} j_{\ell}-\partial_{z} j_{\ell} \\
j_{\ell} & =A z^{\ell}+z^{\ell+2}+\cdots, \\
j_{\ell+1} & =A \ell z^{\ell-1}-B(\ell+2) z^{2 \ell+1}-A_{\ell} \ell z^{\ell-1}+B \ell z^{\ell+1}+\cdots \\
& =2 B z^{\ell+1}
\end{aligned}
$$

Thus, this must work for all ℓ.
Now, doe the same for n_{ℓ}. Assume that for some ℓ

$$
n_{\ell}=A z^{-(\ell+1)}+B^{-(\ell-1)}+\cdots
$$

The recurrence relation leads to

$$
\begin{aligned}
n_{\ell+1} & \left.=\frac{\ell}{z} n\right) \ell-\partial_{z} n_{\ell}, \\
& =\ell A z^{-(\ell+2)}+(\ell+1) A z^{-(\ell+2)}+\cdots \\
& =(2 \ell+1) A z^{-((\ell+1)+2}=(2 \ell+1) A z^{-\ell+1} .
\end{aligned}
$$

Thus, this works for all ℓ
3. Consider a particle of mass m that interacts with a spherically symmetric attractive potential.

$$
V(r)=\left\{\begin{array}{c}
-V_{0}, \quad r<b \\
0, \quad r>b
\end{array}\right.
$$

(a) What is the minimum depth $V_{\min }$ that allows a bound state?
(b) Find an expression for the phase shift in terms of a particle whose momentum is p.
(c) Assuming the depth is $V_{0}=0.99 \cdot V_{\min }$, plot the s-wave phase shift for momenta in the range $0<p<5 \hbar / b$. Use units of \hbar / b for the momenta.
(d) Repeat the above problem for $V_{0}=1.01 \cdot V_{\text {min }}$.
(e) What are the scattering lengths for the two potentials?

Solution:

a)

$$
\begin{aligned}
\psi_{I} & =A \sin \left(k_{I} r\right), \quad \psi_{I I}=e^{-q r} \\
-V_{0}+\frac{\hbar^{2} k_{I}^{2}}{2 m} & =-\frac{\hbar^{2} q^{2}}{2 m}
\end{aligned}
$$

For barely bound state, $q \rightarrow 0$ and

$$
k_{I}=\sqrt{2 m V_{0} / \hbar^{2}}
$$

If ψ_{I} in this limit is to match to exponential wave function with $q=0$, it must have zero slope. Thus

$$
\begin{aligned}
k_{I} b & =\pi / 2 \\
\sqrt{\frac{2 m V_{0}}{\hbar^{2}}} b & =\pi / 2 \\
V_{0} & =\frac{\pi^{2} \hbar^{2}}{8 m b^{2}}
\end{aligned}
$$

b) For scattering, the wave function in region II is

$$
\begin{aligned}
& \psi_{I I}=\sin (k r+\delta) \\
A \sin \left(k_{I} b\right) & =A \sin (k b+\delta) \\
k_{I} A \cos \left(k_{I} b\right) & =k \cos (k b+\delta) \\
\frac{k}{k_{I}} \tan \left(k_{I} B\right) & =\tan (k b+\delta), \\
\delta & =-k b+\arctan \left(\frac{k}{k_{I}} \tan \left(k_{I} b\right)\right), \\
& =-\frac{p b}{\hbar}+\arctan \left(\frac{p}{q} \tan (q b / \hbar)\right), \\
q & =\sqrt{2 m V_{0}+p^{2}}
\end{aligned}
$$

c) and d)

e) Take the expression for δ for small p,

$$
\begin{aligned}
\delta & =-k b+\arctan \left(\frac{k}{k_{I}} \tan \left(k_{I} b\right)\right) \\
& \approx-k b+k \frac{\tan \left(k_{I} b\right)}{k_{I}} \\
& =-\frac{p b}{\hbar}+p \frac{\tan \left(\sqrt{2 m V_{0} / \hbar^{2}} b\right)}{\sqrt{2 m V_{0}}}
\end{aligned}
$$

The scattering length is then

$$
\ell=-b+\frac{\tan \left(\sqrt{2 m V_{0} / \hbar^{2}} b\right)}{\sqrt{2 m V_{0} / \hbar^{2}}}
$$

The scattering lengths change from $+\infty$ to $-\infty$ when the argument of the tangent crosses $\pi / 2$. This is the same condition as having the bound state disapper.
4. Consider a proton scattering off of a an attractive one-dimensional potential,

$$
V(x)=\left\{\begin{array}{rc}
\infty, & x<0 \\
-V_{0}\left(1-\frac{r^{2}}{R^{2}}\right), & 0<x<R \\
0, & r>R
\end{array}\right.
$$

For this example, we will consider $R=2.5 \mathrm{fm}$, and $V_{0}=16 \mathrm{MeV}$. If you wish, to make the units more natural, you may consider $\hbar c=197.327 \mathrm{MeV} \cdot \mathrm{fm}$, and $m_{p}=938.27 \mathrm{MeV} / \mathrm{c}^{2}$. Consider a particle incident on the well with energy E that enters and leaves the well with energy E. Far away, the solutions are of the form,

$$
\psi(x)=e^{-i p x / \hbar}-e^{2 i \delta+i p x / \hbar}, \quad x \gg R
$$

(a) Programming in either PYTHON or $\mathrm{C}++$, construct a program that runs and returns a listing of δ vs. p for $0<p<600 \mathrm{MeV} / \mathrm{c}$, in steps of $2.0 \mathrm{MeV} / \mathrm{c}$.
A graph of the results:

(b) EXTRA CREDIT Make a graph like the one above, except for the region between $\mathrm{p}=0$ and $\mathrm{p}=1.0 \mathrm{MeV}$, and consider two strengths of the potential, $V_{0}=17.0 \mathrm{MeV}$ and $V_{0}=17.025 \mathrm{MeV}$. Be sure to calculate values for very small values of p, in steps of .001 MeV . For this problem, turn in a paper copy of the graph.

Solution:

```
#include <cstdlib>
#include <cmath>
#include <cstdio>
#include <complex>
#include <string>
#include <cstring>
const double PI=4.0*atan(1.0);
const double HBARC=197.3269602;
using namespace std;
double V(double VO,double r){
    const double R=2.5;
    if(r>R)
            return 0.0;
    else
            return -VO*(1.0-r*r/(R*R));
}
double GetDelta(double VO,double p){
    const int NMAX=3000;
    const double Rmax=3.0;
    int n;
    complex<double> psi[NMAX+1],ci(0.0,1.0);
    double mu=938.27,C1,C2,r,q,delta,delr=Rmax/double(NMAX);
    q=p/HBARC;
    C1=q*q*delr*delr;
    C2=2.0*mu*delr*delr/(HBARC*HBARC);
    r=NMAX*delr; psi[NMAX]=exp(-ci*q*r);
    r=(NMAX-1)*delr; psi[NMAX-1]=exp(-ci*q*r);
    for(n=NMAX-2;n>=0;n--){
            r=(n+1)*delr;
            psi[n]=2.0*psi[n+1]-psi[n+2]+(-C1+C2*V(V0,r))*psi[n+1];
    }
    delta=-real(0.5*ci*log(psi[0]/conj(psi[0])));
    return delta;
}
int main(int argc,char *argv[]){
    double VO,p,delp=0.05,delta;
    printf("Enter VO: ");
    scanf("%lf",&V0);
    for(p=delp;p<10;p+=delp) {
        delta=GetDelta(V0,p);
        if(delta<0.0)
            delta+=PI;
        printf("p=%6.2f delta=%g\n",p,delta*180.0/PI);
    }
    return 0;
}
5. Consider a potential which gives non-zero phase shifts for \(0 \leq \ell \leq \ell_{\max }\), where \(\ell_{\max }\) is a large number. Assume these phase shifts can be considered as random numbers, evenly distributed between zero and \(2 \pi\). Using the expression for the cross section,
\[
\sigma=\frac{4 \pi \hbar^{2}}{p^{2}} \sum_{\ell}(2 \ell+1) \sin ^{2} \delta_{\ell},
\]
(a) Find the overall cross section by averaging over the expectation of the random phases. Give your answer in terms of \(\ell_{\max }\) and the incoming momentum \(p\).
(b) Consider a problem classically where one scatters off a strong central potential whose maximum range is \(R_{\max }\). From classical arguments, what is the maximum angular momentum of a particle that scatters? Give your answer in terms of \(R_{\text {max }}\) and the incoming momentum \(p\). What is the total cross section in terms of \(R_{\max }\) in the limit that \(\ell_{\max }\) is large.

\section*{Solution:}

For random phase shifts the average of \(\sin ^{2} \delta\) is \(1 / 2\).
\[
\begin{aligned}
\sigma & =\frac{4 \pi \hbar^{2}}{2 m p^{2}} \sum_{\ell=0}^{\ell_{\max }}(2 \ell+1) \frac{1}{2} \\
& \approx \frac{4 \pi \hbar^{2}}{p^{2}} \sum_{\ell=0}^{\ell_{\max }} \ell \\
& \approx \frac{4 \pi \hbar^{2}}{p^{2}} \frac{\ell_{\max }^{2}}{2} \\
& =\frac{2 \pi \hbar^{2}}{p^{2}} \ell_{\max }^{2} .
\end{aligned}
\]

Now substitute
\[
\hbar \ell_{\max }=p R_{\max }
\]

So
\[
\sigma=2 \pi R_{\max }^{2}
\]

Classically,
\[
\sigma_{\text {classical }}=\pi R_{\max }^{2}
\]

Thus, it is twice the geometric cross section. This doubling is due to diffraction.
6. A particle of mass \(m\) experiences an attractive spherically symmetric potential,
\[
V(r)=-\beta \delta(r-a),
\]
where \(\beta>0\).
(a) In terms of \(a\), and the electron mass \(m\), what is the minimum value of \(\beta\) that results in a bound state?
(b) What is the scattering length and the cross section in the limit that the incident beam energy is zero.
(c) If a scattered wave in a large volume behaves as
\[
\psi(\vec{k}, \vec{r}, t) \sim e^{i \vec{k} \cdot \vec{r}-i \omega t}, t \rightarrow \infty
\]
in the outgoing limit (large time after interacting with potential), what is the relative probability,
\[
\alpha(k)=\frac{\rho(\vec{r}=0)}{\rho_{0}(\vec{r}=0)},
\]
that it will appear at the origin while interacting with the potential? Here \(\rho_{0}\) is the probability density (per unit volume) in the absence of the potential, and \(\rho\) is the probability density with the potential in place. FYI: The ratio \(\alpha\) would be the same if the boundary conditions specified an incoming plane wave, instead of matching to an outgoing plane wave.
(d) Assume \(\beta\) is sufficiently large to bind a particle, and that the ground state energy is \(-B\). For the ground state what is the probability density of finding the particle at \(\vec{r}=0\) ? Refer to this as \(\rho_{b}(\vec{r}=0)\) ? Given answer in terms of \(a\) and the binding energy \(B\) (or equivalently the decay wave number, \(q \equiv \sqrt{2 m B / \hbar^{2}}\) ). HINT: You don't need to solve for the binding energy!

\section*{Solution:}
a)
\[
\begin{aligned}
\psi_{I} & =A \sinh (q r), \\
\psi_{I I} & =e^{-q r} \\
\text { B.C. : } A \sin (q a) & =e^{-q a}, \\
a A \cosh (q a)+q e^{-q a} & =\frac{2 m \beta}{\hbar^{2}} e^{-q a} .
\end{aligned}
\]

Eliminate \(A\),
\[
\tanh (q a)=\frac{1}{\left[2 m \beta /\left(\hbar^{2} q\right)\right]-1}=q \frac{\hbar^{2} /(2 m \beta)}{1-\hbar^{2} q /(2 m \beta)}
\]

Both the tanh and the r.h.s. functions begin as linear function. The tanh function bends down with increasing \(a\) while the r.h.s. bends upwards. If the two are to intersect (and have a bound
state solution), the slope of the tanh function must start lower. Thus for a bound state
\[
\begin{gathered}
a<\frac{\hbar^{2}}{(2 m \beta)} \\
\beta>\frac{\hbar^{2}}{2 m a} .
\end{gathered}
\]
b) Consider \(k \rightarrow 0\), and because \(\delta(k=0)=0\) you can write \(\delta(k) \approx k d \delta / d k\).
\[
\begin{aligned}
\psi_{I} & =\sin (k r), \psi_{I I} \\
A \sin (k a) & =\sin (k a+\delta), \\
k A \cos (k a)-k \cos (k a+\delta) & =\frac{2 m \beta}{\hbar^{2}} A \sin (k a), \\
\frac{\sin (k a)}{k \cos (k a)-\left(2 m \beta / \hbar^{2}\right) \sin (k a)} & =\frac{\sin (k a+\delta)}{k \cos (k a+\delta)},(1) \\
\text { As } k \rightarrow 0, \frac{a}{1-2 m \beta a / \hbar^{2}} & =a+\frac{d \delta}{d k}, \\
\frac{d \delta}{d k} & =-a+\frac{a}{1-2 m \beta a / \hbar^{2}}=\frac{2 m \beta a^{2} \hbar^{2}}{1-2 m \beta a / \hbar^{2}}, \\
\text { scatt. length } \ell & =-\frac{d \delta}{d k}=-\frac{2 m \beta a^{2} \hbar^{2}}{1-2 m \beta a / \hbar^{2}}
\end{aligned}
\]

As \(k \rightarrow 0\),
\[
\begin{aligned}
\sigma & =\frac{4 \pi}{k^{2}} \sin ^{2} \delta=4 \pi\left(\frac{d \delta}{d k}\right)^{2} \\
& =4 \pi a^{2}\left(\frac{2 m \beta a \hbar^{2}}{1-2 m \beta a / \hbar^{2}}\right)^{2}
\end{aligned}
\]
c) At small \(r, u_{\ell}(r) \approx A k r e^{i \delta}\), and the wave function \(R_{\ell}(r \rightarrow 0)=u_{\ell} /(k r)=A e^{i \delta}\). Looking at the partial wave expansion, and realizing that only the \(\ell=0\) term contributes at \(r=0\), one can see that the wave function at \(r=0\) is
\[
\begin{aligned}
& \psi(r=0)=R_{\ell=0}(r=0) / \sqrt{V}=A / \sqrt{V} \\
& |\psi(r=0)|^{2}=\frac{A^{2}}{V}
\end{aligned}
\]

In the absence of the potential the wave function would be \(e^{i \vec{k} \cdot \vec{r}} / \sqrt{V}\) and density would be \(1 / V\). So the interaction enhances the density at the origin by a factor of \(A^{2}\).
Solving for \(A\) from the BC above,
\[
\begin{aligned}
A^{2} & =\frac{\sin ^{2}(k a+\delta)}{\sin ^{2}(k a)} \\
& =\frac{\tan ^{2}(k a+\delta)}{1+\tan ^{2}(k a+\delta)} \frac{1}{\sin ^{2}(k a)}
\end{aligned}
\]

Using the previous expression (1),
\[
\tan (k a+\delta)=\frac{\sin (k a)}{\cos (k a)-\left[2 m \beta /\left(\hbar^{2} k\right)\right] \sin (k a)} .
\]

Plugging this in and rearranging,
\[
\begin{aligned}
\alpha=A^{2} & =\frac{1}{\left(\cos (k a)-\left[2 m \beta /\left(\hbar^{2} k\right)\right] \sin (k a)\right)^{2}} \frac{1}{1+\frac{\sin ^{2}(k a)}{\left(\cos (k a)-\left[2 m \beta /\left(\hbar^{2} k\right)\right] \sin (k a)\right)^{2}}} \\
& =\frac{1}{\left(\cos (k a)-\left[2 m \beta /\left(\hbar^{2} k\right)\right] \sin (k a)\right)^{2}+\sin ^{2}(k a)} .
\end{aligned}
\]

Note that for \(\beta=0\) you indeed get \(\alpha=1\) as expected.
7. Near a resonance of energy \(\epsilon_{R}\), a phase shift behaves as:
\[
\tan \delta_{\ell}=\frac{\Gamma / 2}{\epsilon_{R}-E}
\]
where \(E\) is the c.m. kinetic energy. For the following problems, assume that \(\Gamma \ll \epsilon_{R}\), so that the \(4 \pi / k^{2}\) prefactor in the expression for the cross section can be considered as a constant.
(a) Write down the cross section \(\sigma_{\ell}(E)\).
(b) What is the maximum cross section for a narrow cross section (as \(E\) is varied) for scattering through that partial wave? (How does it depend on \(\epsilon_{R}, \Gamma\), the reduced mass \(\mu\), and \(\ell\) )?
(c) What is the energy integrated cross section \(\left(\int \sigma_{\ell}(E) d E\right)\) ?

\section*{Solution:}
a)
\[
\begin{gather*}
\sigma=\frac{4 \pi}{k^{2}} \sin ^{2} \delta  \tag{0.1}\\
=\frac{4 \pi}{k^{2}}\left(1-\frac{1}{1+\tan ^{2} \delta}\right)  \tag{0.2}\\
=\frac{4 \pi}{k^{2}}\left(\frac{\tan ^{2} \delta}{1+\tan ^{2} \delta}\right)  \tag{0.3}\\
\frac{4 \pi}{k^{2}} \frac{(\Gamma / 2)^{2} /\left(\epsilon_{R}-E\right)^{2}}{1+(\Gamma / 2)^{2} /\left(\epsilon_{R}-E\right)^{2}}  \tag{0.4}\\
=\frac{4 \pi}{k^{2}} \frac{(\Gamma / 2)^{2}}{(\Gamma / 2)^{2}+\left(\epsilon_{R}-E\right)^{2}} \tag{0.5}
\end{gather*}
\]
b) The maximum cross section is
\[
\begin{aligned}
& \sigma_{\max }=\frac{4 \pi}{k_{R}^{2}} \\
& \frac{\hbar^{2} k_{R}^{2}}{2 \mu}=\epsilon_{R} \\
& k_{R}^{2}=\frac{2 m \epsilon_{R}}{\hbar^{2}} .
\end{aligned}
\]
c) Approximate the \(1 / k^{2}\) as \(1 / k_{R}^{2}\) for a narrow resonance.
\[
\begin{equation*}
\int d E \sigma(E)=\frac{4 \pi}{k^{2}} \int d E \frac{(\Gamma / 2)^{2}}{(\Gamma / 2)^{2}+\left(\epsilon_{R}-E\right)^{2}} . \tag{0.7}
\end{equation*}
\]

Substitute \(\tan \theta=\left(\epsilon_{R}-E\right) /(\Gamma / 2)\), then
\[
\int d E \sigma(E)=\frac{4 \pi}{k^{2}} \frac{\pi \Gamma}{2}
\]

Thus, narrower resonances integrate to smaller values because the range of their influence is proportional to \(\Gamma\) and the maximum cross section depends only on the wave number for resonance, \(k_{R}\).
8. The temperature at the center of the sun is 15 million degrees Kelvin. Consider two protons with a relative kinetic energy characteristic of the temperature,
\[
\frac{\hbar^{2} k^{2}}{2 \mu}=\frac{3}{2} k T .
\]
(a) What is the Gamow penetrability factor? Give a numeric value.
(b) If the two particles were a proton and a \({ }^{12} \mathrm{C}\) nucleus, what would the penetrability factor become?

\section*{Solution:}
a)
\[
\begin{array}{rlr}
G & =\frac{2 \pi \gamma}{e^{2 \pi \gamma}-1}, \quad \gamma=\frac{1}{k a_{0}}, & =\frac{3}{2} 1.3 k e V \\
T & =15 \times 10^{6} K=\frac{15 \times 10^{6} \mathrm{~K}}{1.1605 \times 10^{4} \mathrm{~K} / \mathrm{eV}}=1.3 \mathrm{keV} \cdot \frac{\hbar^{2} k^{2}}{2 \mu} & =1.91 \mathrm{MeV} \\
k & =\sqrt{\frac{3 \mu 1.3 \mathrm{keV}}{\hbar}}, \quad \hbar c=197.327 \mathrm{eV} \mathrm{~nm}, \hbar c k & \\
\gamma & =\frac{m_{p} c^{2}}{2} \frac{1}{137.036} \frac{1}{\hbar c k}=1.79 \\
G & =1.44 \times 10^{-4}
\end{array}
\]
b)
\[
\begin{aligned}
\gamma & \equiv \frac{\mu Z_{1} Z_{2} e^{2}}{\hbar^{2} k} \\
\gamma & =\frac{6 m_{p}}{137.036} \frac{1.91}{\sqrt{2}}=55 \\
G & =1.25 \times 10^{-149}
\end{aligned}
\]
9. Consider a particle of mass \(m\) undergoing a repulsive spherically symmetric Coulomb potential, \(V=Z e^{2} / r\). The classical analogue of the squared wave function is
\[
\left|\phi\left(\vec{p}_{f}, \vec{r}\right)\right|^{2} \rightarrow \frac{d^{3} p_{i}}{d^{3} p_{f}}
\]

Here, \(\vec{p}_{i}\) is the momentum when the particle is at position \(\vec{r}\), and \(\vec{p}_{f}\) is the asymptotic momentum at large times.
(a) If one averages over all directions of the final momentum, what is \(\left.\left.\langle | \phi\left(\vec{p}_{f}, \vec{r}\right)\right|^{2}\right\rangle\) ? Give a sketch of the classical approximationn to \(\langle | \phi\left(\vec{p}_{f}, \vec{r}\right)\rangle\) as a function of \(r\) for fixed \(p\).
(b) Repeats (a) but working in two dimensions, i.e. find \(d^{2} p_{i} / d^{2} p_{f}\).
(c) Repeats (a) and (b) but working in one dimension, i.e. find \(d p_{i} / d p_{f}\).

\section*{Solution:}
a)
\[
\begin{aligned}
\frac{p_{i}^{2}}{2 m}+\frac{Z e^{2}}{r} & =\frac{p_{f}^{2}}{2 m} \\
p_{i} d p_{i} & =p_{f} d p_{f} \\
\left|\frac{d^{3} p_{i}}{d^{3} p_{f}}\right| & =\frac{p_{i}}{p_{f}} \frac{p_{i} d p_{i}}{p_{f} d p_{f}} \\
& =\frac{p_{i}}{p_{f}} \\
& =\sqrt{\frac{p_{f}^{2}-2 m e^{2} / r}{p_{f}^{2}}}
\end{aligned}
\]

However, there is no \(p_{i}\) for \(p_{f}^{2} / 2 m<Z e^{2} / r\), so the value is zero for small \(r\).
\[
\left|\phi\left(\vec{p}_{f}, \vec{r}\right)\right|^{2} \rightarrow\left\{\begin{aligned}
\sqrt{\frac{p_{f}^{2}-2 m e^{2} / r}{p_{f}^{2}}}, & r>2 m Z e^{2} / p_{f}^{2} \\
0, & r<2 m Z e^{2} / p_{f}^{2}
\end{aligned}\right.
\]
b) In two dimensions
\[
\left|\phi\left(\vec{p}_{f}, \vec{r}\right)\right|^{2} \rightarrow \frac{p_{i} d p_{i}}{p_{f} d p_{f}}=1
\]
when energetically allowed.
\[
\left|\phi\left(\vec{p}_{f}, \vec{r}\right)\right|^{2} \rightarrow \begin{cases}1, & r>2 m Z e^{2} / p_{f}^{2} \\ 0, & r<2 m Z e^{2} / p_{f}^{2}\end{cases}
\]

In one dimension b) In two dimensions
\[
\left|\phi\left(\vec{p}_{f}, \vec{r}\right)\right|^{2} \rightarrow \frac{p_{i} d p_{i}}{p_{f} d p_{f}}=\frac{p_{f}}{p_{i}},
\]
when energetically allowed.
\[
\left|\phi\left(\vec{p}_{f}, \vec{r}\right)\right|^{2} \rightarrow\left\{\begin{aligned}
\sqrt{\frac{p_{f}^{2}}{p_{f}^{2}-2 m e^{2} / r}}, & r>2 m Z e^{2} / p_{f}^{2} \\
0, & r<2 m Z e^{2} / p_{f}^{2}
\end{aligned}\right.
\]
```

