
Chapter 8 – Homework Solutions

1. Show that if the function u`(kr) is defined in terms of R`(r)

u`(kr) ≡ rR`(r),

where R` is a solution to the radial Schrödinger equation{
− ~2

2m

1

r

∂2

∂r2
r +

~2

2m

`(`+ 1)

r2
+ V (r)

}
R`(r) =

~2k2

2m
R`(r),

that u` satisfies the differential equation,(
d2

dx2
+ 1

)
u`(x) =

`(`+ 1)

x2
u`(x) + β(x)u`(x),

where β is proportional to the potential,

β(x) =
2m

~2k2
V (x/k).

Solution:

r

{
− ~2

2m

1

r
∂2
rr +

~2

2m

`(`+ 1)

r2
+ V (r)

}
u`
r

=
~2k2

2m
u`,{

− ~2

2m
∂2
r +

~2`(`+ 1)

2mr2
+ V (r)

}
u` =

~2k2

2m
u`,{

∂2
r +

`(`+ 1)

r2
+

2mV (r)

~2

}
u` = k2u`(r),

x = kr,{
−∂2

x +
`(`+ 1)

x2
+ β(x)

}
u` = u`. X
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2. Recurrence relations for Bessel functions provide you the ability to find forms for solutions at
higher ` given you know the form for ` = 0 and ` = 2

(a) Show that in the case of zero potential that the solutions u` satisfy the recurrence relation.

u`+1(x) =
(`+ 1)

x
u`(x)− d

dx
u`(x).

Use the expressions from the previous problem,(
d2

dx2
+ 1

)
u`(x) =

`(`+ 1)

x2
u`(x) + β(x)u`(x). (1)

(b) Show that this recurrence relation can be equivalently expressed as

f`+1(x) =
`

x
f`(x)− d

dx
f`(x),

where f` is a solution to the radial Schrödinger equation, f`(kr) ≡ u`(kr)/(kr), which
means that f` might be any linear combination of j` and n`.

(c) One can also show that a second recurrence relation is satisfied,

f`−1(x) =
(`+ 1)

x
f`(x) +

d

dx
f`(x).

Given this recurrence relation, plus the one from the previous problem, show that

f`−1(x) + f`+1(x) =
(2`+ 1)

x
f`(x)

(d) Using expressions for j0, j1, n0 and n1, use recurrence relations to find expressions for j2

and n2.

(e) Using the recurrence relations, show that j`(z) and n`(z) behave as z` and z−(`+1) re-
spectively for z → 0. Begin with the facts that j0(z) and n0(z) behave as z0 and z−1

respectively, and that they are even and odd functions in z.

Solution:
a) Begin by inserting the expression for u`+1 to see if it satisfies the differential equation for `+1.[

−∂2
x +

(`+ 1)(`+ 2)

x2
− 1

] [
(`+ 1)

x
u` − ∂xu`

]
=?0,[

−∂2
x +

(`)(`+ 1)

x2
− 1 +

(2`+ 2)

x2

] [
(`+ 1)

x
u` − ∂xu`

]
=?0,

−2(`+ 1)

x3
u` +

2(`+ 1)

x2
∂xu` +

(2`+ 2)(`+ 1)

x3
u`

+∂x

[(
`(`+ 1)

x2
− 1

)
u`

]
−
[
`(`+ 1)

x2
− 1

]
∂xu` −

2(`+ 1)

x2
∂xu` =?0,
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Eq. (1) was used to eliminated the term with ∂2
xu`.[

2(`+ 1)

x2
− 2(`+ 1)

x2

]
∂xu` +

[
−2(`+ 1)

x3
+

2(`+ 1)2

x3
− 2`(`+ 1)

x3

]
u` =?0

One can see that both terms on the l.h.s. are zero.
b)

u`+1 =
`+ 1

x
u` − ∂xu`,

xf`+1 =
(`+ 1)

x
xf` − ∂x(xf`),

f` + 1 =
`+ 1

x
f` −

1

x
f` − ∂xf`,

=
`

x
f` − ∂xf` X

c) Add the expressions for f`−1 and f`+1,

f`−1 + f`+1 =

(
`

x
+

(`+ 1)

x

)
f`

=
(2`+ 1)

x
f` X

d) Use the relation:

f`−1 + f`+1 =
(2`+ 1)

x
f`,

f`+1 =
(2`+ 1)

x
f` − f`−1.

j2 = −j0 +
3

x
j1

= −sinx

x
− 3

x2
cosx+

3

x2
sinx,

n2 = −n0 +
3

x
n1,

=
cosx

x
− 3

x3
cosx− 3

x2
sinx.

e) Start with low z behavior for j0(z) and n0(z).

j0 ∼ z0, n0 ∼ z−1, f`+1 =
`

z
f` −

d

dz
f`.

Assume j` ∼ z` for some `.

j`+1 =
`

z
j` − ∂zj`,

j` = Az` + z`+2 + · · · ,
j`+1 = A`z`−1 −B(`+ 2)z2`+1 − A``z`−1 +B`z`+1 + · · ·

= 2Bz`+1.
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Thus, this must work for all `.
Now, doe the same for n`. Assume that for some `

n` = Az−(`+1) +B−(`−1) + · · · ,

The recurrence relation leads to

n`+1 =
`

z
n)`− ∂zn`,

= `Az−(`+2) + (`+ 1)Az−(`+2) + · · ·
= (2`+ 1)Az−((`+1)+2 = (2`+ 1)Az−`+1.

Thus, this works for all `
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3. Consider a particle of mass m that interacts with a spherically symmetric attractive potential.

V (r) =

{
−V0, r < b

0, r > b

(a) What is the minimum depth Vmin that allows a bound state?

(b) Find an expression for the phase shift in terms of a particle whose momentum is p.

(c) Assuming the depth is V0 = 0.99 · Vmin, plot the s-wave phase shift for momenta in the
range 0 < p < 5~/b. Use units of ~/b for the momenta.

(d) Repeat the above problem for V0 = 1.01 · Vmin.

(e) What are the scattering lengths for the two potentials?

Solution:
a)

ψI = A sin(kIr), ψII = e−qr,

−V0 +
~2k2

I

2m
= −~2q2

2m
.

For barely bound state, q → 0 and

kI =
√

2mV0/~2.

If ψI in this limit is to match to exponential wave function with q = 0, it must have zero slope.
Thus

kIb = π/2,√
2mV0

~2
b = π/2,

V0 =
π2~2

8mb2
.

b) For scattering, the wave function in region II is

ψII = sin(kr + δ)

A sin(kIb) = A sin(kb+ δ),

kIA cos(kIb) = k cos(kb+ δ),

k

kI
tan(kIB) = tan(kb+ δ),

δ = −kb+ arctan

(
k

kI
tan(kIb)

)
,

= −pb
~

+ arctan

(
p

q
tan(qb/~)

)
,

q =
√

2mV0 + p2.
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c) and d)

0.0 1.0 2.0 3.0 4.0 5.0
pb/ c

0

30

60

90

120

150

180
 (d

eg
re

es
)

e) Take the expression for δ for small p,

δ = −kb+ arctan

(
k

kI
tan(kIb)

)
≈ −kb+ k

tan(kIb)

kI
,

= −pb
~

+ p
tan(

√
2mV0/~2b)√
2mV0

.

The scattering length is then

` = −b+
tan(

√
2mV0/~2b)√

2mV0/~2

The scattering lengths change from +∞ to −∞ when the argument of the tangent crosses π/2.
This is the same condition as having the bound state disapper.
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4. Consider a proton scattering off of a an attractive one-dimensional potential,

V (x) =


∞, x < 0

−V0

(
1− r2

R2

)
, 0 < x < R

0, r > R

For this example, we will consider R = 2.5 fm, and V0=16 MeV. If you wish, to make the units
more natural, you may consider ~c=197.327 MeV·fm, and mp = 938.27 MeV/c2. Consider a
particle incident on the well with energy E that enters and leaves the well with energy E. Far
away, the solutions are of the form,

ψ(x) = e−ipx/~ − e2iδ+ipx/~ , x >> R

(a) Programming in either PYTHON or C++, construct a program that runs and returns a
listing of δ vs. p for 0 < p < 600 MeV/c, in steps of 2.0 MeV/c.

A graph of the results:

(b) EXTRA CREDIT Make a graph like the one above, except for the region
between p=0 and p=1.0 MeV, and consider two strengths of the potential,
V0 = 17.0 MeV and V0 = 17.025 MeV. Be sure to calculate values for very small
values of p, in steps of .001 MeV. For this problem, turn in a paper copy of
the graph.

Solution:
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#include <cstdlib>

#include <cmath>

#include <cstdio>

#include <complex>

#include <string>

#include <cstring>

const double PI=4.0*atan(1.0);

const double HBARC=197.3269602;

using namespace std;

double V(double V0,double r){

const double R=2.5;

if(r>R)

return 0.0;

else

return -V0*(1.0-r*r/(R*R));

}

double GetDelta(double V0,double p){

const int NMAX=3000;

const double Rmax=3.0;

int n;

complex<double> psi[NMAX+1],ci(0.0,1.0);

double mu=938.27,C1,C2,r,q,delta,delr=Rmax/double(NMAX);

q=p/HBARC;

C1=q*q*delr*delr;

C2=2.0*mu*delr*delr/(HBARC*HBARC);

r=NMAX*delr; psi[NMAX]=exp(-ci*q*r);

r=(NMAX-1)*delr; psi[NMAX-1]=exp(-ci*q*r);

for(n=NMAX-2;n>=0;n--){

r=(n+1)*delr;

psi[n]=2.0*psi[n+1]-psi[n+2]+(-C1+C2*V(V0,r))*psi[n+1];

}

delta=-real(0.5*ci*log(psi[0]/conj(psi[0])));

return delta;

}

int main(int argc,char *argv[]){

double V0,p,delp=0.05,delta;

printf("Enter V0: ");

scanf("%lf",&V0);

for(p=delp;p<10;p+=delp){

delta=GetDelta(V0,p);

if(delta<0.0)

delta+=PI;

printf("p=%6.2f delta=%g\n",p,delta*180.0/PI);

}

return 0;
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5. Consider a potential which gives non-zero phase shifts for 0 ≤ ` ≤ `max, where `max is a large
number. Assume these phase shifts can be considered as random numbers, evenly distributed
between zero and 2π. Using the expression for the cross section,

σ =
4π~2

p2

∑
`

(2`+ 1) sin2 δ`,

(a) Find the overall cross section by averaging over the expectation of the random phases.
Give your answer in terms of `max and the incoming momentum p.

(b) Consider a problem classically where one scatters off a strong central potential whose
maximum range is Rmax. From classical arguments, what is the maximum angular mo-
mentum of a particle that scatters? Give your answer in terms of Rmax and the incoming
momentum p. What is the total cross section in terms of Rmax in the limit that `max is
large.

Solution:
For random phase shifts the average of sin2 δ is 1/2.

σ =
4π~2

2mp2

`max∑
`=0

(2`+ 1)
1

2

≈ 4π~2

p2

`max∑
`=0

`

≈ 4π~2

p2

`2
max

2

=
2π~2

p2
`2

max.

Now substitute

~`max = pRmax,

So

σ = 2πR2
max.

Classically,

σclassical = πR2
max.

Thus, it is twice the geometric cross section. This doubling is due to diffraction.
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6. A particle of mass m experiences an attractive spherically symmetric potential,

V (r) = −βδ(r − a),

where β > 0.

(a) In terms of a, and the electron mass m, what is the minimum value of β that results in
a bound state?

(b) What is the scattering length and the cross section in the limit that the incident beam
energy is zero.

(c) If a scattered wave in a large volume behaves as

ψ(~k, ~r, t) ∼ ei
~k·~r−iωt, t→∞

in the outgoing limit (large time after interacting with potential), what is the relative
probability,

α(k) =
ρ(~r = 0)

ρ0(~r = 0)
,

that it will appear at the origin while interacting with the potential? Here ρ0 is the prob-
ability density (per unit volume) in the absence of the potential, and ρ is the probability
density with the potential in place. FYI: The ratio α would be the same if the boundary
conditions specified an incoming plane wave, instead of matching to an outgoing plane
wave.

(d) Assume β is sufficiently large to bind a particle, and that the ground state energy is −B.
For the ground state what is the probability density of finding the particle at ~r = 0?
Refer to this as ρb(~r = 0)? Given answer in terms of a and the binding energy B (or
equivalently the decay wave number, q ≡

√
2mB/~2). HINT: You don’t need to solve

for the binding energy!

Solution:
a)

ψI = A sinh(qr),

ψII = e−qr,

B.C. : A sin(qa) = e−qa,

aA cosh(qa) + qe−qa =
2mβ

~2
e−qa.

Eliminate A,

tanh(qa) =
1

[2mβ/(~2q)]− 1
= q

~2/(2mβ)

1− ~2q/(2mβ)
.

Both the tanh and the r.h.s. functions begin as linear function. The tanh function bends down
with increasing a while the r.h.s. bends upwards. If the two are to intersect (and have a bound
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state solution), the slope of the tanh function must start lower. Thus for a bound state

a <
~2

(2mβ)
,

β >
~2

2ma
.

b) Consider k → 0, and because δ(k = 0) = 0 you can write δ(k) ≈ kdδ/dk.

ψI = sin(kr), ψII = sin(kr + δ),

A sin(ka) = sin(ka+ δ),

kA cos(ka)− k cos(ka+ δ) =
2mβ

~2
A sin(ka),

sin(ka)

k cos(ka)− (2mβ/~2) sin(ka)
=

sin(ka+ δ)

k cos(ka+ δ)
, (1)

As k → 0,
a

1− 2mβa/~2
= a+

dδ

dk
,

dδ

dk
= −a+

a

1− 2mβa/~2
=

2mβa2~2

1− 2mβa/~2
,

scatt. length ` = −dδ
dk

= − 2mβa2~2

1− 2mβa/~2

As k → 0,

σ =
4π

k2
sin2 δ = 4π

(
dδ

dk

)2

= 4πa2

(
2mβa~2

1− 2mβa/~2

)2

.

c) At small r, u`(r) ≈ Akreiδ, and the wave function R`(r → 0) = u`/(kr) = Aeiδ. Looking at
the partial wave expansion, and realizing that only the ` = 0 term contributes at r = 0, one can
see that the wave function at r = 0 is

ψ(r = 0) = R`=0(r = 0)/
√
V = A/

√
V ,

|ψ(r = 0)|2 =
A2

V
.

In the absence of the potential the wave function would be ei
~k·~r/
√
V and density would be 1/V .

So the interaction enhances the density at the origin by a factor of A2.
Solving for A from the BC above,

A2 =
sin2(ka+ δ)

sin2(ka)
,

=
tan2(ka+ δ)

1 + tan2(ka+ δ)

1

sin2(ka)
.
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Using the previous expression (1),

tan(ka+ δ) =
sin(ka)

cos(ka)− [2mβ/(~2k)] sin(ka)
.

Plugging this in and rearranging,

α = A2 =
1

(cos(ka)− [2mβ/(~2k)] sin(ka))2

1

1 + sin2(ka)
(cos(ka)−[2mβ/(~2k)] sin(ka))2

=
1

(cos(ka)− [2mβ/(~2k)] sin(ka))2 + sin2(ka)
.

Note that for β = 0 you indeed get α = 1 as expected.
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7. Near a resonance of energy εR, a phase shift behaves as:

tan δ` =
Γ/2

εR − E
,

where E is the c.m. kinetic energy. For the following problems, assume that Γ << εR, so that
the 4π/k2 prefactor in the expression for the cross section can be considered as a constant.

(a) Write down the cross section σ`(E).

(b) What is the maximum cross section for a narrow cross section (as E is varied) for scat-
tering through that partial wave? (How does it depend on εR, Γ, the reduced mass µ,
and `)?

(c) What is the energy integrated cross section (
∫
σ`(E)dE)?

Solution:
a)

σ = 4π
k2

sin2 δ (0.1)

= 4π
k2

(
1− 1

1+tan2 δ

)
(0.2)

= 4π
k2

(
tan2 δ

1+tan2 δ

)
(0.3)

4π
k2

(Γ/2)2/(εR−E)2

1+(Γ/2)2/(εR−E)2
(0.4)

= 4π
k2

(Γ/2)2

(Γ/2)2+(εR−E)2
, (0.5)

(0.6)

b) The maximum cross section is

σmax =
4π

k2
R

,

~2k2
R

2µ
= εR,

k2
R =

2mεR
~2

.

c) Approximate the 1/k2 as 1/k2
R for a narrow resonance.∫
dEσ(E) = 4π

k2

∫
dE (Γ/2)2

(Γ/2)2+(εR−E)2
. (0.7)

Substitute tan θ = (εR − E)/(Γ/2), then∫
dEσ(E) =

4π

k2

πΓ

2
.

Thus, narrower resonances integrate to smaller values because the range of their influence is
proportional to Γ and the maximum cross section depends only on the wave number for resonance,
kR.
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8. The temperature at the center of the sun is 15 million degrees Kelvin. Consider two protons
with a relative kinetic energy characteristic of the temperature,

~2k2

2µ
=

3

2
kT.

(a) What is the Gamow penetrability factor? Give a numeric value.

(b) If the two particles were a proton and a 12C nucleus, what would the penetrability factor
become?

Solution:
a)

G =
2πγ

e2πγ − 1
, γ =

1

ka0

,

T = 15× 106K =
15× 106 K

1.1605× 104 K/eV
= 1.3keV.

~2k2

2µ
=

3

2
1.3keV,

k =

√
3µ 1.3keV

~
, ~c = 197.327eV nm, ~ck = 1.91 MeV,

γ =
mpc

2

2

1

137.036

1

~ck
= 1.79,

G = 1.44× 10−4.

b)

γ ≡ µZ1Z2e
2

~2k
,

γ =
6mp

137.036

1.91√
2

= 55,

G = 1.25× 10−149.

.
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9. Consider a particle of massm undergoing a repulsive spherically symmetric Coulomb potential,
V = Ze2/r. The classical analogue of the squared wave function is

|φ(~pf , ~r)|2 →
d3pi
d3pf

.

Here, ~pi is the momentum when the particle is at position ~r, and ~pf is the asymptotic mo-
mentum at large times.

(a) If one averages over all directions of the final momentum, what is 〈|φ(~pf , ~r)|2〉? Give a
sketch of the classical approximationn to 〈|φ(~pf , ~r)|〉 as a function of r for fixed p.

(b) Repeats (a) but working in two dimensions, i.e. find d2pi/d
2pf .

(c) Repeats (a) and (b) but working in one dimension, i.e. find dpi/dpf .

Solution:
a)

p2
i

2m
+
Ze2

r
=

p2
f

2m
,

pidpi = pfdpf ,∣∣∣∣ d3pi
d3pf

∣∣∣∣ =
pi
pf

pidpi
pfdpf

=
pi
pf

=

√
p2
f − 2me2/r

p2
f

.

However, there is no pi for p2
f/2m < Ze2/r, so the value is zero for small r.

|φ(~pf , ~r)|2 →


√

p2f−2me2/r

p2f
, r > 2mZe2/p2

f

0, r < 2mZe2/p2
f

b) In two dimensions

|φ(~pf , ~r)|2 →
pidpi
pfdpf

= 1,

when energetically allowed.

|φ(~pf , ~r)|2 →
{

1, r > 2mZe2/p2
f

0, r < 2mZe2/p2
f

In one dimension b) In two dimensions

|φ(~pf , ~r)|2 →
pidpi
pfdpf

=
pf
pi
,
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when energetically allowed.

|φ(~pf , ~r)|2 →


√

p2f
p2f−2me2/r

, r > 2mZe2/p2
f

0, r < 2mZe2/p2
f

r

0

2

4

6

8

10

Ga
m

ow
 fa

ct
or

1 dimension
2 dimensions
3 dimensions

16


