
Chapter 6 – Homework Solutions

1. Using the WKB approximation, you can estimate the lifetime of a particle of mass m initially
trapped in the “ground state” of a one-dimensional rectangular well using Eq. (??),

V (x) =


∞, x < 0
0, 0 < x < a
α
x
, a < x

Assume the barrier is sufficiently high that the wave function in the well can be approximated
as that of an infinite well and that the frequency of tunneling attempts can be thought of as
the rate at which a classical particle would impact the barrier at that energy.

(a) Estimate the energy E, by treating the potential as if its infinity at x = a.

(b) To what point, xf , does the particle need to tunnel to escape the well.

(c) Estimate the tunneling probability, e−2φ, where φ is calculated using the WKB approxi-
mation. I.e. find an expression for φ. Warning: The integral is not trivial.

(d) In terms of φ what is the lifetime?

Solution:
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a)

Probability ≈ e−2φ,

φ =

∫ xf

a

dx
√

2m(V (x)− E)/~2, xf = α/E.

φ =

√
2mE

~2

∫ xf

a

dx
√

(xf/(x)− 1),

sub u = xf/x, du = −dxxf/x2, dx = −(du/u2)xf ,

φ =
√

2mx2fE/(~2)I(xf/a),

I(y) ≡
∫ y

1

du

u2
√
u− 1,

sub z =
√
u− 1, u− 1 = z2, du = 2zdz,

I(y) = 2

∫ √y−1
0

dz
z2

(1 + z2)2
.

sub z = tan θ, dz/(1 + z2) = dθ,

I(y) = 2

∫ tan−1(
√
y−1)

0

dθ
tan2 θ

1 + tan2 θ

= 2

∫ tan−1(
√
y−1)

0

dθ sin2 θ

=

∫ tan−1(
√
y−1)

0

dθ(1− cos 2θ)

=

[
θ − 1

2
sin(2θ)

]tan−1(
√
y−1)

0

,

1

2
sin(2θ) = sin θ cos θ =

√
1− cos2 θ cos θ =

√
1− 1

1 + tan2 θ

√
1

1 + tan2 θ
.

I(y) = tan−1(
√
y − 1)−

√
y − 1

y

√
1

y

= tan−1(
√
y − 1)− 1

y

√
y − 1,

φ =
√

2mx2fE/~2I(xf/a), xf = α/E.

b) The tunneling success probability is approximately e−2φ and the trial rate is v/(2a), where
the “velocity” is given the classical value,

v =
√

2E/m.

The lifetime is then

τ ≈
√

2ma2

E
e2φ.

where φ is given above.
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2. A particle of mass m is initially in the ground state of a one-dimensional harmonic oscillator
of frequency ω centered at x = 0. Suddenly, at time t = 0, the center of the well is moved to
x = `. Here, you will calculate the probability that the particle will be found in the state |n〉
of the new well, where |0〉 is the new ground state.

(a) The ground state of the old well can be written as

|φ0〉 = e`(d/dx)|0〉,

where φ0 is the ground state of the old well and |n〉 refers to eigenstates of the newly
positioned well. Writing the operator d/dx in terms of creation and destruction operators
of the new well, find an expression for |φ0〉 as a linear combination of |n〉. HINT: You
will probably wish to use the Baker-Campbell-Hausdorff relation.

(b) What is the probability of finding the particle in the state |n〉.
(c) What is the expectation of the energy 〈H〉 after the well is shifted?

(d) If the well were shifted slowly instead of suddenly to its new position, what would be the
probability of finding the particle in the ground state of the new well?

Solution:
a)

|φ0〉 = e`∂x|0〉,

∂x =
ip

~
=

1

~

√
~mω

2
(a− a†) =

1

21/2b
(a− a†), b2 =

~
mω0

,

e`/(2
1/2b)(a−a†) = e−`/(2

1/2b)a†e`/(2
1/2b)ae−(1/2)(`

2/2b2)[a,a†]

The far-right exponential is just a number as [a, a†] = 1. The center exponential can be expanded
in a Taylor expansion, so when operating on the vacuum, |0〉, only the first term survives so it
becomes unity. Thus,

e`/(2
1/2b)(a−a†)|0〉 = e−(1/2)(`

2/2b2)e−`/(2
1/2b)a†|0〉.

The exponential with the a† can also be expanded, so the overlap with the original ground state
is thus

〈0|e`/(21/2b)(a−a†)|0〉 = e−(1/2)(`
2/2b2).

The probability of staying in the ground state is the square of the matrix element,

Prob = e−(`
2/2b2).

b) Take the overlap into the state |n〉

〈n|e`∂x|0〉 = e−(1/2)(`
2/2b2)〈n|e(−`)/(21/2b)a†|0〉.

Expanding the exponential and using the fact that (a†)n|0〉 =
√
n!|n〉,

〈n|e`∂x|0〉 = e−(1/2)(`
2/2b2) [−`/(21/2b)]n√

n!
,

Prob(n) = e−(`
2/2b2) [(`

2/(2b2)]n

n!
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Note that if you sum over n you will get unity. c)

〈H〉 =
∑
n

Prob(n)~ω0(n+ 1/2)

= e−(`
2/2b2)~ω0

∞∑
n=0

[(`2/(2b2)]n

n!
(n+ 1/2).

For the 1/2 in (n+ 1/2), that simply sums to 1/2 by inspection.

〈H〉 = e−(`
2/2b2)~ω0/2 + e−(`

2/2b2)~ω0

∞∑
n=0

[(`2/(2b2)]n

n!
n.

By pulling out a factor of (`2/(2b2) from the sum, you can see that the rest of the sum combined
with the preceding exponential will be unity by replacing n− 1 with n,

〈H〉 = e−(`
2/2b2)~ω0/2 + ~ω0

`2

2b2
=

~ω0

2
+

1

2
mω2

0`
2.

d) 100%.
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3. Estimate the ground state energy of the hydrogen atom using a three-dimensional harmonic
oscillator ground state wave function as a trial function. Give your answer in terms of the
electron mass m and the coupling e2.

Solution:

ψ =
1

(πb2)3/4
e−r

2/2b2 ,

〈KE〉 = 3

〈
p2x
2m

〉
(by symmetry)

= 3
~2

2m

∫
dx

(πb2)1/2
e−x

2/2b2∂2xe
−x2/2b2

= −3
~2

2m

∫
dx

(πb2)1/2
e−x

2/2b2
[
x2

b4
− 1

b2

]
e−x

2/2b2

= 3
~2

2m

1

2b2
=

3~2

4mb2
.

Alternatively, you could have used the equipartition theorem for the harmonic oscillator and
written down the answer.

〈V 〉 = −
∫

4πr2dr

(πb2)3/2
e−r

2/b2 e
2

r

=
−2ıe2

(πb2)3/2

∫
du e−u

2/b2

= − 2e2

π1/2b
.

d

db

(
3~2

4m

1

b2
− 2e2

π1/2b

)
= 0,

3~2

2m

1

b3
=

2e2

π1/2b2
,

b =
3~2π1/2

4me2
.

Plug this expression for b into the expressions for V and KE to get (after some algebra)

E = 〈KE〉+ 〈V 〉

=
4me4

3~2π
− 8me4

3π~2

= −4

3

me4

π~2
.

This is a factor of 8/(3π) smaller than the true binding energy.
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4. Estimate the ground state energy of the three-dimensional harmonic oscillator using the hy-
drogen atom wave function as the trial wave function. Give your answer in terms of the mass
m and the characteristic frequency of the harmonic oscillator ω.

Solution:

ψ(r) = e−r/b
1

π1/2b3/2
,

〈KE〉 = − ~2

2m
4π

∫
r2dr

1

πb3
e−r/b

(
∂2r +

2

r
∂r

)
e−r/b

= − 2~2

mb3

∫
r2dr e−2r/b

(
− 1

b2
+

2

br

)
= − 2~2

mb2
[
−2(1/2)3 + 2(1/2)2

]
=

~2

2mb2
.

〈V 〉 = 4π

∫
r2dr

1

πb3
e−2r/b

1

2
kr2,

=
2k

b3

∫
f 4dr!e−2r/b

=
3

2
kb2

d

db

{
~2

2mb2
+

3

2
kb2
}

=
~2

mb3
+ 3kb = 0,

b2 =

(
~2

3mk

)1/2

,

Plugging the expression for b into the expressions for 〈KE〉 and 〈V 〉,

E =
√

3~ω0.

This is larger that the true ground state energy by a factor 2
√

3/3.
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5. Consider a particle in an infinitely deep square well of width a.

V0(x) =


∞, x < −a/2
0, −a/2 < x < a/2
∞, x > a/2

A particle feels a perturbative potential,

V1(x) = β sin(πx/a)

(a) What is the change in the ground state energy in lowest (non-zero) order perturbation
theory?

(b) What is the correction to the energy of the first excited state to the same order?

(c) What is the correction to the wave function of the ground state to lowest non-zero order?

Solution:
a) ∆E(1) = 0 because the perturbation is odd.
b) Also zero, same reason
c)

εn =
~2

2m
k2n, kna = (n+ 1)π,

εn =
~2π2

2m
(n+ 1)2,

∆E(2) = −
∞∑

n=odd

|〈n|V |0〉|2

εn − ε0

ψn=odd(x) =

√
2

a
sin(2mπx/a), m = (n+ 1)/2

=

√
2

a
sin((n+ 1)πx/a),

ψ0(x) =

√
2

a
cos(πx/a),

〈n = odd|V |0〉 =
2β

a

∫ a/2

−a/2
dx sin[(n+ 1)πx/a] cos(πx/a) sin(πx/a),

=
β

a

∫ a/2

−a/2
dx sin[(n+ 1)πx/a] sin(2πx/a).

The last sin term is a solution, and by orthogonality, one can see that only the n = 1 term
contributes from the sum.

〈n = odd|V |0〉 =
β

2
δn,1.

The energy difference between the n = 0 and n = 1 states is

ε1 − ε0 =
3~2π2

2ma2
,
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so

∆E(2) = −ma
2β2

6~2π2
.
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6. Consider the Hamiltonian:
H0 = ασz

and the perturbation
V = βσx

(a) What is the correction to the ground state energy to second order in perturbation theory?

(b) What is the correction to the excited state’s energy to the same order?

(c) Find the exact expression for the energy of the first state, and show that it gives the
same answer as part a when expanded in powers of β.

Solution:
a)

ε0 = −α, ε1 = α.

The first-order correction is zero because 〈0|σx|0〉 = 0.

∆E(2) = −β
2

2α
|〈1|σx|0〉|2

= −β
2

2α
.

b) Same matrix, but opposite sign in the denominator,
β2

2α
.

c)

H =
√
α2 + β2~σ · n̂,

E = ±
√
α2 + β2,

= ±α
√

1 + β2/α2

≈ ±(α +
β2

2α
).
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7. An electron of mass m initially in the ground state of a three-dimensional harmonic oscillator
potential characterized by frequency ω, i.e. the ground state energy is 3~ω/2, is placed in a
region with uniform electric field E.

(a) By finding corrections to the ground state wave function in first order perturbation
theory, find an expression for the electric dipole moment induced in the atom.

(b) An alternative method for calculating the dipole moment is to differentiate the energy
with respect to the electric field. Show that this method yields the same expression
found in (a) when one uses second order perturbation theory to find the correction to
the energy.

Solution:

V = −eEx = eE(a+ a†)

√
~

2mω0

,

|ψ〉 = |ψ0〉+
∑
m

〈0|V |m〉
εm − ε0

|ψm〉

Only the m = 1 term contributes

|ψ〉 = |ψ0〉+
eE
√

~/(2mω)

~ω
|ψ1〉

= |ψ0〉+
eE√

2~mω3
0

|ψ1〉,

p = −〈ψ|ex|ψ〉

= − e2E√
2~mω3

0

〈0|x|1〉+ h.c.

Using the expression for x in terms of (a+ a†) above,

p = −2
e2E√
~mω3

0

√
~

2mω0

=
e2E

mω2
0

.
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8. Two electrons whose positions are defined by r1 and r2 relative to the centers of their confining
potentials. The confining potentials are then separated by a distance ~R.

V0(r1, r2) =
1

2
mω2(r21 + r22).

Positive charges +e are fixed at the centers of the potentials. The electromagnetic energy
between the two wells is:

V =
e2

R
+

e2

|~R + ~r1 − ~r2|
− e2

|~R + ~r1|
− e2

|~R− ~r2|
.

Here, the repulsive interaction between the two positive ions is described by the first term,
and the repulsive interaction between the electrons is described by the second term. The last
two terms describe the attractive interaction between the electron and the ion in the other
well. The electromagnetic energy between each electron and its confining ion is assumed to
be part of the confining potential, and not part of the perturbation.

Assume that the separation R is much larger than either r1 or r2. In terms of the separation
between the wells, R, the mass of the electrons m, the charge e and ω,

(a) Show that for largeR, the interaction may be approximated as a dipole-dipole interaction,

V =
e2

R3
(x1x2 + y1y2 − 2z1z2) ,

where the z axis is along the direction of ~R.

(b) Use second-order perturbation theory to find the electromagnetic attraction of the two
wells, V (R). This motivates the form for the London dispersion force, https://en.

wikipedia.org/wiki/London_dispersion_force, which is the long-range attractive
force between neutral molecules.

Solution:
a) First, some calculus for expanding 1/|~R + ~a|, and keeping terms of to order a2

|~R + ~a| =
√
R2 + 2~a · ~R + a2

= R

√
1 + 2~a · ~R/R2 + a2/R2,

1

|~R + ~a|
≈ 1

R

{
1− 1

2

(
2~a · ~R/R2 + a2/R2

)
+

3

8

(
2~a · ~R/R2

)2}
=

1

R
− ~a ·

~R

R3
− a2

2R3
+

3

2

(~a · ~R)2

R5
.

Next, write the inter-atom interaction, using the shorthand

U(R,~a) ≡ e2

|Rẑ + ~a|

V = U(R, 0)− U(R,~r1)− U(R,−~r2) + U(R,~r1 − ~r2).
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Using the expansion above, one can see that all the terms of order 1/R or r/R2 cancel. This
gives

V =
e2

R3

{
−1

2
|~r1 − ~r2|2 +

1

2
|~r1|2 +

1

2
|~r2|2 −

3

2
(~r1 · ~R)2/R2 − 3

2
(~r2 · ~R)2/R2 +

3

2
[(~r1 − ~r2) · ~R]2/R2.

}
=

e2

R3

{
~r1 · ~r2 − (~r1 · ~R)(~r2 · ~R)/R2

}
=

e2

R3
{x1x2 + y1y2 + z1z2 − 3z1z2}

=
e2

R3
{x1x2 + y1y2 − 2z1z2} .

b) Consider the x1x2 term by itself. Then multiply your answer by 6 to get the entire answer.

∆E(2) = −6
|〈n1x = 1, n2x = 1|V |n1x = 0, n2x = 0〉|2

2~ω
.

The matrix element 〈n1x = 1, n2x = 1|x1x2|n1x = 0, n2x = 0〉 is simply the product of two matrix
elements for one-dimensional oscillators,

〈n1x = 1, n2x = 1|x1x2|n1x = 0, n2x = 0〉 = 〈1|x|0〉2

〈1|x|0〉 =

√
~

2mω
〈1|(a+ a†)|0〉 =

√
~

2mω
.

Putting everything together,

∆E(2) = − 3~e4

2m2ω3R6
.

Note that this is the force between two atoms where for each atom the ground state has no
dipole moment. Thus, this is an induced-dipole-induced-dipole interaction. If one or both atoms
or molecules have dipole moment in their ground state, the force will be different, and fall off
more slowly in R.
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9. Consider the function

g(ω) ≡ Im
1

ω − iη
=

η

ω2 + η2

where η is a positive real constant that approaches zero.

(a) What is g(ω = 0)?

(b) What is g(ω 6= 0)?

(c) Using trigonometric substitutions, evaluate∫ ∞
−∞

dω g(ω).

(d) Write an expression for a delta function in terms of g(ω).

Solution:
a) ∞
b) zero
c) ∫

dω g(ω) =

∫
dη

ω

ω2 + η2

sub x = ω/η,∫
dω g(ω) =

∫
dx

1 + x2
,

sub x = tan θ, dx = sec2 θdθ = (1 + tan2 θ)dθ,∫
dω g(ω) =

∫ π/2

−π/2
dθ = π.

d) Because the function is zero every where except at ω = 0, is ∞ at x = 0, and integrates to π,

1

π
g(ω) = δ(ω).
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10. A bob particle is in the ground state of a 3-dimensional harmonic oscillator characterized by
a frequency ω,

V0 =
1

2
mω2r2

A perturbation is added that allows a bob particle to undergo a transformation into a mary
particle. The mary particle does not feel the effects of the oscillator potential. The bob and
mary particles have the same mass m. The perturbation is of the form,

Vbm = g~εs ·
∫
d3rψ∗bob(r)∇ψmary(r),

where εs is the unit polarization vector of the mary particle with polarization s, which refers
to any of three directions.

(a) Find the total decay rate Γ (to any polarization). Hint: The answer will of the form

Γ = A
mg2b3k3

~3
,

where A is a dimensionless constant and b is the size of the harmonic oscillator wave
function. You need to find A.

(b) Find the differential decay rate, dΓs/d cos θ, for a polarization ~εs = ẑ.

Solution:
a)

ψm(~r) =
ei
~k·~r
√
V
,

ψb(~r) =
e−x

2/2b2

(πb2)3/4
,

k =
√

2mE/~2,

E =
3

2
~ω,

Vbm(ε,~k) =
ig~ε · ~k

b3/2π3/4V 1/2
I(kx)I(ky), I(kz),

where I(k) is given by the following integral, which can be performed by completing the square
in the argument of the exponential,

I(k) =

∫
dx eikxe−x

2/2b2

= e−k
2b2/2

∫
dx e−(x−ikb

2)2/2b2

= e−k
2b2/2
√

2πb2.
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The matrix element is now

Vbm(ε,~k) =
ig~ε · ~kπ3/4(2b)3/2

V 1/2
e−|

~k|2b2/2.

From Fermi’s golden rule, the rate to decay into a given state with momentum ~k and polarization
~ε is

Γ(~ε,~k) =
2π

~
g2(~ε · ~k)2π3/2(2b)3

V
e−|

~k|2b2δ(Ek − 3~ω/2).

Summing over all ~k, the rate to decay into some polarization state ~ε,

Γ(~ε) =
V

(2π)3

∫
2πk2dkd cos θk,ε Γ(~ε,~k),

where the angle is that between ~k and ~ε. So,

Γ(~ε) =
V

(2π)3
2π

~
g2π3/2(2b)3

V

∫
2πk2dkd cos θ k2 cos2 θe−|

~k|2b2δ(Ek − 3~ω/2),

Now, using the fact that

δ(Ek − 3~ω/2) =
m

~2k
δ(k −

√
2mE/~2),

and rearranging factors (note that the volume cancels),

Γ(~ε) =
V

(2π)3
2π

~
g2π3/2(2b)3

V
2πk2

∫
d cos θ k2 cos2 θe−|

~k|2b2 m

~2k

=
8mg2b3k3π1/2

3~3
e−|

~k|2b2 .

All three polarizations give the same rate, so to get the total decay rate, multiply by three,

Γ =
8π1/2mg2b3k3

~3
e−|

~k|2b2 .

b) For a given polarization, simple omit the integral over θ in the integral above, and one gets

dΓs
d cos θ

=
4π1/2mg2b3k3

~3
cos2 θe−|

~k|2b2 .

The emission prefers to be parallel or anti-parallel to the polarization.
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