
Chapter 5 – Homework Solutions

1. Let T~d denote the translation operator (displacement vector ~d); D(n̂, φ), the rotation operator;
and π the parity operator. Which, if any, of the following pairs commute? Why?

(a) T~d and T~d′ (~d and ~d′ are in different directions.)

(b) D(n̂, φ) and D(n̂′, φ′) (n̂ and n̂′ are in different directions.)

(c) T~d and Π.

(d) D(n̂, φ) and Π.

Solution:
a) YES! ∂i and ∂j commute
b) NO! The generators Li and Lj don’t commute (unless i = j)
c) NO! It makes a difference if you translate then reflect or reflect then translate

d) YES! Li and Π commute. I.e. Π does not affect ~L.
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2. Because of weak (neutral-current) interactions there is a parity-violating potential between
the atomic electron and the nucleus as follows:

V = λ
[
δ3(~r)S · p + S · pδ3(~r)

]
where S and p are the spin and momentum operators of the electron, and the nucleus is
assumed to be situated at the origin. As a result, the ground state of an alkali atom, usually
characterized by |n, `, j,m〉 actually contains tiny contributions from other eigenstates as
follows

|n, `, j,m〉 → |n, `, j,m〉+
∑

n′,`′,j′,m′

Cn′,`′,j′,m′|n′, `′, j′,m′〉

On the basis of symmetry considerations alone, what can you say about (n′, `′, j′,m′) which
give rise to non-vanishing contributions?

Solution:
1.) Because of angular momentum conservation one can say the j′ = j and m′ = m.
2.) Because the operator has odd parity:
If ` is even then `′ is odd and
if ` is odd then `′ is even.
3.) Not from symmetry, but because the matrix element has a factor δ(~r) and radial wave
functions behave as r`, one can state that either
` = 0 and `′ = 1 or ` = 1 and `′ = 0.
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3. Suppose a spinless particle is bound to a fixed center by a potential V (~r) so asymmetrical
that no two energy levels are degenerate. Using time-reversal invariance prove

〈L〉 = 0.

for any energy eigenstate. Use the fact each eigenwave function ψ(~r) must be an eigenstate
of the time reversal operator with eigenvalue eiγ, thus ψ∗(~r) = eiγψ(~r). Also use the fact that
〈α|Li|α〉 is real because Li is a Hermitian operator. (This is known as quenching of orbital
angular momentum.)

Solution:
〈i|~L|i〉 is real because ~L is Hermitian. Further,

〈i|~L|i〉 =

∫
dr ψ∗i (~r~Lψi(~r)

Because there is no degeneracy, the time-reversed operator must return the same state within a
phase,

Θψ = eiγψ.

Further, the time reversed operator must be the complex conjugate,

Θψ = ψ∗.

Thus,
ψ∗ = eiγψ,

which implies ψ = e−iγψ∗. Now,

〈i|Lz|i〉 =

∫
d3r ψ∗i (~r)i~∂φψi(~r)

=

∫
d3r ψi(~r)(−i~∂φ)ψ∗i (~r) (because it is real)

=

∫
d3r e−iγψ∗(~r)i~∂φψi(~r)eiγ

=

∫
d3r ψ∗i (~r)(−i~∂φ)ψi(~r).

The matrix element equals minus itself, so it must be zero. This can work for any Li by defining
angle around the axis i.
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4. Consider the time-reversal operator for spin-1/2 particles, Θ = σyK, where K takes the
complex conjugate of all quantities to its right. Show that Θ commutes with the rotation
operator,

R(~θ) = cos(θ) + i~σ · θ̂ sin(θ).

Solution:

[Θ, iσx] = σyK(iσx)− (iσx)σyK

because σx is real

= −iσyσxK − iσxσyK
= 0 X

[Θ, iσy] = σyK(iσy)− (iσy)σyK

because σy is imaginary

= iσ2
yK − iσ2

y

= 0 X

[Θ, iσz] = σyK(iσz)− (iσz)σyK

because σz is real

= −iσyσzK − iσzσyK
= 0 X

R = cos θI + iσxθ̂x sin θ + iσyθ̂y sin θ + iσz θ̂z sin θ.

Θ commutes with R because it commutes with I, σx, σy and σz.
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5. Consider a particle of mass M confined to a two-dimensional circle of radius R.

(a) Write down the Schrödinger equation for the wave function ψ(φ), where the potential
depends only on φ, and radial motion is ignored.

(b) Assuming the potential is periodic,

V (φ+ 2π/N) = V (φ),

where N is an integer. Write the boundary condition relating ψ(φ) and ψ(φ + 2π/N),
where the eigenvalue of the rotation operator, R(2π/N), is eiγ. What values of γ are
allowed?

(c) Assume the potential ,

V (φ) = β
∑
j=1,N

δ(φ− 2πj/N),

Assume the wave function has the form,

ψ(φ) = eimφ +Be−imφ, 0 < φ < 2π/N,

where m is not necessarily an integer. Find a transcendental expression for m in terms
of β, M , γ and n. Hint: Note the similarity to the Kronig-Penny model, where the
solution in Eq. (??) translates to this problem with qa→ mα, ka→ γ, and a→ α, with
α = 2π/N .

Solution:
a)

− ~2

2MR2
∂2φψ + V (φ)ψ = Eψ.

b)

eiNγ = 1, γ =
2πj

N
, j = integer.

c)

− ~2

2MR2

(
∂φψ|(2π/N)+ε − ∂φψ|(2π/N)−ε

)
+ β ψ|2π/N = 0,

ψ = eimφ +Be−imφ,

Let α =
2π

N
, γ = jα,

ψ(α) = ψ(0)eijα,

(1) eimα +Be−imα = eijα(1 +B),

− ~2

2mR2
[ψ′(0+)eijα − ψ′(α−)] = −βψ(α),

(2) − im[eimα −Be−imα − eijα(1−B)] = p(1 +B)eijα,

where p ≡ 2mβR2

~2
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From (1)

B =
eimα − eijα

eijα − e−imα

From (2)

B =
(p/m)eijα + ieimα − ieijα

ie−imα − ieijα − (p/m)eijα

Equating the two expressions for B,

ei(m−j)α − 1

1− e−i(m+j)α
=

(p/m)− i+ iei(m−j)α

−(p/m)− i+ ie−i(m+j)α

Multiply equation by both denominators to get

i+ (−(p/m)− i)ei(m−j)α + ie−2ijα − ie−i(m+j)α = −i+ iei(m+j)α − ie−2ijα − ((p/m)− i)e−i(m+j)α,

2i− 2iei(m−j)α + 2ie−2ijα − 2ie−i(m+j)α =
p

m

(
−e−i(m+j)α + ei(m−j)α

)
,

2 cos(jα)− 2 cos(mα) =
p

m
sin(mα)

One needs to solve the last equation for m to find the energy,

E =
~2

2MR2
m2.
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