Chapter 5 - Homework Solutions

1. Let $\mathcal{T}_{\vec{d}}$ denote the translation operator (displacement vector $\left.\vec{d}\right) ; \mathcal{D}(\hat{n}, \phi)$, the rotation operator; and π the parity operator. Which, if any, of the following pairs commute? Why?
(a) $\mathcal{T}_{\vec{d}}$ and $\mathcal{T}_{\vec{d}^{\prime}}$ (\vec{d} and $\overrightarrow{d^{\prime}}$ are in different directions.)
(b) $\mathcal{D}(\hat{n}, \phi)$ and $\mathcal{D}\left(\hat{n}^{\prime}, \phi^{\prime}\right)$ (\hat{n} and \hat{n}^{\prime} are in different directions.)
(c) $\mathcal{T}_{\vec{d}}$ and Π.
(d) $\mathcal{D}(\hat{n}, \phi)$ and Π.

Solution:

a) YES! ∂_{i} and ∂_{j} commute
b) NO! The generators L_{i} and L_{j} don't commute (unless $i=j$)
c) NO! It makes a difference if you translate then reflect or reflect then translate
d) YES! L_{i} and Π commute. I.e. Π does not affect \vec{L}.
2. Because of weak (neutral-current) interactions there is a parity-violating potential between the atomic electron and the nucleus as follows:

$$
V=\lambda\left[\delta^{3}(\vec{r}) \mathbf{S} \cdot \mathbf{p}+\mathbf{S} \cdot \mathbf{p} \delta^{3}(\vec{r})\right]
$$

where \mathbf{S} and \mathbf{p} are the spin and momentum operators of the electron, and the nucleus is assumed to be situated at the origin. As a result, the ground state of an alkali atom, usually characterized by $|n, \ell, j, m\rangle$ actually contains tiny contributions from other eigenstates as follows

$$
|n, \ell, j, m\rangle \rightarrow|n, \ell, j, m\rangle+\sum_{n^{\prime}, \ell^{\prime}, j^{\prime}, m^{\prime}} C_{n^{\prime}, \ell^{\prime}, j^{\prime}, m^{\prime}}\left|n^{\prime}, \ell^{\prime}, j^{\prime}, m^{\prime}\right\rangle
$$

On the basis of symmetry considerations alone, what can you say about ($n^{\prime}, \ell^{\prime}, j^{\prime}, m^{\prime}$) which give rise to non-vanishing contributions?

Solution:

1.) Because of angular momentum conservation one can say the $j^{\prime}=j$ and $m^{\prime}=m$.
2.) Because the operator has odd parity:

If ℓ is even then ℓ^{\prime} is odd and
if ℓ is odd then ℓ^{\prime} is even.
3.) Not from symmetry, but because the matrix element has a factor $\delta(\vec{r})$ and radial wave functions behave as r^{ℓ}, one can state that either
$\ell=0$ and $\ell^{\prime}=1$ or $\ell=1$ and $\ell^{\prime}=0$.
3. Suppose a spinless particle is bound to a fixed center by a potential $V(\vec{r})$ so asymmetrical that no two energy levels are degenerate. Using time-reversal invariance prove

$$
\langle\mathbf{L}\rangle=0 .
$$

for any energy eigenstate. Use the fact each eigenwave function $\psi(\vec{r})$ must be an eigenstate of the time reversal operator with eigenvalue $e^{i \gamma}$, thus $\psi^{*}(\vec{r})=e^{i \gamma} \psi(\vec{r})$. Also use the fact that $\langle\alpha| L_{i}|\alpha\rangle$ is real because L_{i} is a Hermitian operator. (This is known as quenching of orbital angular momentum.)

Solution:

$\langle i| \vec{L}|i\rangle$ is real because \vec{L} is Hermitian. Further,

$$
\langle i| \vec{L}|i\rangle=\int d^{r} \psi_{i}^{*}\left(\vec{r} \vec{L} \psi_{i}(\vec{r})\right.
$$

Because there is no degeneracy, the time-reversed operator must return the same state within a phase,

$$
\Theta \psi=e^{i \gamma} \psi
$$

Further, the time reversed operator must be the complex conjugate,

$$
\Theta \psi=\psi^{*}
$$

Thus,

$$
\psi^{*}=e^{i \gamma} \psi
$$

which implies $\psi=e^{-i \gamma} \psi^{*}$. Now,

$$
\begin{aligned}
\langle i| L_{z}|i\rangle & =\int d^{3} r \psi_{i}^{*}(\vec{r}) i \hbar \partial_{\phi} \psi_{i}(\vec{r}) \\
& =\int d^{3} r \psi_{i}(\vec{r})\left(-i \hbar \partial_{\phi}\right) \psi_{i}^{*}(\vec{r}) \quad \text { (because it is real) } \\
& =\int d^{3} r e^{-i \gamma} \psi^{*}(\vec{r}) i \hbar \partial_{\phi} \psi_{i}(\vec{r}) e^{i \gamma} \\
& =\int d^{3} r \psi_{i}^{*}(\vec{r})\left(-i \hbar \partial_{\phi}\right) \psi_{i}(\vec{r}) .
\end{aligned}
$$

The matrix element equals minus itself, so it must be zero. This can work for any L_{i} by defining angle around the axis i.
4. Consider the time-reversal operator for spin- $1 / 2$ particles, $\Theta=\sigma_{y} K$, where K takes the complex conjugate of all quantities to its right. Show that Θ commutes with the rotation operator,

$$
\mathcal{R}(\vec{\theta})=\cos (\theta)+i \vec{\sigma} \cdot \hat{\theta} \sin (\theta)
$$

Solution:

$$
\left[\Theta, i \sigma_{x}\right]=\sigma_{y} K\left(i \sigma_{x}\right)-\left(i \sigma_{x}\right) \sigma_{y} K
$$

because σ_{x} is real

$$
\begin{aligned}
& =-i \sigma_{y} \sigma_{x} K-i \sigma_{x} \sigma_{y} K \\
& =0 \checkmark
\end{aligned}
$$

$$
\left[\Theta, i \sigma_{y}\right]=\sigma_{y} K\left(i \sigma_{y}\right)-\left(i \sigma_{y}\right) \sigma_{y} K
$$

because σ_{y} is imaginary

$$
\begin{aligned}
& =i \sigma_{y}^{2} K-i \sigma_{y}^{2} \\
& =0 \quad \checkmark
\end{aligned}
$$

$$
\left[\Theta, i \sigma_{z}\right]=\sigma_{y} K\left(i \sigma_{z}\right)-\left(i \sigma_{z}\right) \sigma_{y} K
$$

because σ_{z} is real

$$
\begin{aligned}
& =-i \sigma_{y} \sigma_{z} K-i \sigma_{z} \sigma_{y} K \\
& =0
\end{aligned}
$$

$$
\mathcal{R}=\cos \theta \mathbb{I}+i \sigma_{x} \hat{\theta}_{x} \sin \theta+i \sigma_{y} \hat{\theta}_{y} \sin \theta+i \sigma_{z} \hat{\theta}_{z} \sin \theta
$$

Θ commutes with \mathcal{R} because it commutes with $\mathbb{I}, \sigma_{x}, \sigma_{y}$ and σ_{z}.
5. Consider a particle of mass M confined to a two-dimensional circle of radius R.
(a) Write down the Schrödinger equation for the wave function $\psi(\phi)$, where the potential depends only on ϕ, and radial motion is ignored.
(b) Assuming the potential is periodic,

$$
V(\phi+2 \pi / N)=V(\phi)
$$

where N is an integer. Write the boundary condition relating $\psi(\phi)$ and $\psi(\phi+2 \pi / N)$, where the eigenvalue of the rotation operator, $\mathcal{R}(2 \pi / N)$, is $e^{i \gamma}$. What values of γ are allowed?
(c) Assume the potential ,

$$
V(\phi)=\beta \sum_{j=1, N} \delta(\phi-2 \pi j / N)
$$

Assume the wave function has the form,

$$
\psi(\phi)=e^{i m \phi}+B e^{-i m \phi}, \quad 0<\phi<2 \pi / N
$$

where m is not necessarily an integer. Find a transcendental expression for m in terms of β, M, γ and n. Hint: Note the similarity to the Kronig-Penny model, where the solution in Eq. (??) translates to this problem with $q a \rightarrow m \alpha, k a \rightarrow \gamma$, and $a \rightarrow \alpha$, with $\alpha=2 \pi / N$.

Solution:

a)

$$
-\frac{\hbar^{2}}{2 M R^{2}} \partial_{\phi}^{2} \psi+V(\phi) \psi=E \psi
$$

b)

$$
e^{i N \gamma}=1, \quad \gamma=\frac{2 \pi j}{N}, \quad j=\text { integer }
$$

c)

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 M R^{2}}\left(\left.\partial_{\phi} \psi\right|_{(2 \pi / N)+\epsilon}-\left.\partial_{\phi} \psi\right|_{(2 \pi / N)-\epsilon}\right) & +\left.\beta \psi\right|_{2 \pi / N}=0, \\
\psi & =e^{i m \phi}+B e^{-i m \phi}, \\
\text { Let } \alpha & =\frac{2 \pi}{N}, \gamma=j \alpha, \\
\psi(\alpha) & =\psi(0) e^{i j \alpha}, \\
(1) e^{i m \alpha}+B e^{-i m \alpha} & =e^{i j \alpha}(1+B), \\
-\frac{\hbar^{2}}{2 m R^{2}}\left[\psi^{\prime}\left(0^{+}\right) e^{i j \alpha}-\psi^{\prime}\left(\alpha^{-}\right)\right] & =-\beta \psi(\alpha), \\
(2)-i m\left[e^{i m \alpha}-B e^{-i m \alpha}-e^{i j \alpha}(1-B)\right] & =p(1+B) e^{i j \alpha}, \\
\text { where } p & \equiv \frac{2 m \beta R^{2}}{\hbar^{2}}
\end{aligned}
$$

From (1)

$$
B=\frac{e^{i m \alpha}-e^{i j \alpha}}{e^{i j \alpha}-e^{-i m \alpha}}
$$

From (2)

$$
B=\frac{(p / m) e^{i j \alpha}+i e^{i m \alpha}-i e^{i j \alpha}}{i e^{-i m \alpha}-i e^{i j \alpha}-(p / m) e^{i j \alpha}}
$$

Equating the two expressions for B,

$$
\frac{e^{i(m-j) \alpha}-1}{1-e^{-i(m+j) \alpha}}=\frac{(p / m)-i+i e^{i(m-j) \alpha}}{-(p / m)-i+i e^{-i(m+j) \alpha}}
$$

Multiply equation by both denominators to get

$$
\begin{aligned}
i+(-(p / m)-i) e^{i(m-j) \alpha}+i e^{-2 i j \alpha}-i e^{-i(m+j) \alpha} & =-i+i e^{i(m+j) \alpha}-i e^{-2 i j \alpha}-((p / m)-i) e^{-i(m+j) \alpha}, \\
2 i-2 i e^{i(m-j) \alpha}+2 i e^{-2 i j \alpha}-2 i e^{-i(m+j) \alpha} & =\frac{p}{m}\left(-e^{-i(m+j) \alpha}+e^{i(m-j) \alpha}\right), \\
2 \cos (j \alpha)-2 \cos (m \alpha)=\frac{p}{m} \sin (m \alpha) &
\end{aligned}
$$

One needs to solve the last equation for m to find the energy,

$$
E=\frac{\hbar^{2}}{2 M R^{2}} m^{2}
$$

