
Chapter 4 – Homework Solutions

1. (a) Show that ~r2 = x2 + y2 + z2 commutes with Lz.

(b) Show that ~r · ~p commutes with Lz.

Solution:
a)

Lz = (−i~)(x∂y − y∂x),
[Lz, x

2 + y2 + z2] = (−i~){x∂y(x2 + y2 + z2)− y∂x(x2 + y2 + z2)}
= (−i~)(2xy − 2yx) = 0 X

b)

[Lz, (xpx + ypy + zpz)]

= (−~)2{x∂y(x∂x + y∂y + z∂z)− y∂x(x∂x + y∂y + z∂z)}
+ ~2{x∂x(x∂y − y∂x) + y∂y(x∂y − y∂x) + z∂z(x∂y − y∂x)}
= ~2(−x∂y + y∂x + x∂y − y∂x) = 0 X
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2. Any two rotations, ~α and ~β, can be written as a single rotation by ~γ, which in the spin 1/2
basis means

ei
~β·~σ/2ei~α·~σ/2 = ei~γ·~σ/2.

Show that the equivalent angle ~γ may be written in terms of ~α and ~β as

cos(γ/2) = cos(β/2) cos(α/2)− β̂ · α̂ sin(α/2) sin(β/2)

γ̂ sin(γ/2) = cos(β/2) sin(α/2)α̂ + cos(α/2) sin(β/2)β̂ + sin(β/2) sin(α/2)α̂× β̂,

where α̂, β̂ and γ̂ are the corresponding unit vectors. Note that these relations would hold
for any rotation, not just the spin 1/2 system. Thus, they describe the rotation group.
Hints: Use the fact that ei~a·σ = cos(a) + i~σ·~a|~a| sin(a). Also use the identity σiσj = δij + iεijkσk.

Solution:

ei
~β·~σ/2 = cos(β/2) + i(β̂ · ~σ) sin(β/2),

ei~α·~σ/2 = cos(α/2) + i(α̂ · ~σ) sin(α/2),

ei
~β·~σ/2ei~α·~σ/2 = cos(β/2) cos(α/2) + i(β̂ · ~σ) sin(β/2) cos(α/2)

+ i(α̂ · ~σ) sin(α/2) cos(β/2)

− (β̂ · ~σ)(α̂ · ~σ) sin(β/2) sin(α/2),

= cos(γ/2) + i(γ̂ · ~σ) sin(γ/2).

We must find γ for which the last expression is true. First, we need to write the term that is
quadratic in sigma matrices as a sum of terms that are linear in sigma matrices or constant,

β̂iσiα̂jσj = iεijkσkβ̂iα̂j + β̂ · α̂
= i(β̂ × α̂) · ~σ + β̂ · α̂.

After substituting above, one can see that for the terms with no sigma matrices to satisfy the
equality

cos(γ/2) = cos(β/2) cos(α/2)− β̂ · α̂ sin(α/2) sin(β/2).

For the terms linear in sigma matrices,

sin(γ/2)γ̂ = β̂ sin(β/2) cos(α/2) + α̂ sin(α/2) cos(β/2)

− (β̂ × α̂) sin(β/2) sin(α/2).

If you’re bored, you can check the expressions for cos(γ/2) and sin(γ/2) to see that they indeed
satisfy the identity cos2(γ/2) + sin2(γ/2) = 1.
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3. Consider the matrices,

Sx =
~√
2

 0 1 0
1 0 1
0 1 0

 , Sy =
~√
2

 0 −i 0
i 0 −i
0 i 0

 , Sz = ~

 1 0 0
0 0 0
0 0 −1

 .

These represent the rotation matrices for angular momentum S = 1, S(S+ 1) = 2. Note that
the eigenvalues of Sz are -1,0,1 as expected.

(a) Explicitly multiply the matrices to show that

[Si, Sj] = i~εijkSk.

For efficiency, just pick one of the three combinations to check.

(b) Explicitly multiply the matrices to show that∑
i

S2
i = 2~2I = ~2S(S + 1)I.

Solution:
a)

SxSy − SySx =
~2

2


 i 0 −i

0 0 0
i 0 −i

−
 −i 0 −i

0 0 0
i 0 i


= i~2

 1 0 0
0 0 0
0 0 −1

 = i~Sz X

b)

S2
x =

~2

2

 1 0 1
0 2 0
0 0 −1

 ,

S2
y =

~2

2

 1 0 −1
0 2 0
−1 0 1

 ,

S2
z = ~2

 1 0 0
0 0 0
0 0 1

 ,

S2
x + S2

y + S2
z = ~2

 2 0 0
0 2 0
0 0 2

 = 2~2I.

Because these are the matrices for S = 1, we expected
∑

i S
2
i = S(S + 1), and indeed for

S(S + 1) = 2 for S = 1.
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4. Using the definition, Lz = −i~(x∂y− y∂x) = −i~∂φ, express X(α) = eiLzα/~xe−iLzα/~ in terms
of x, y and z. Hint: Note that

eα∂φf(φ)e−α∂φ = f(φ+ α).

because eα∂φ generates a Taylor expansion.

Solution:

Lz = −i~(x∂y − y∂x) = −i~∂φ,
eiLzα/~ = eα∂φ ,

eiLzα/~(r sin θ cosφ)e−iLzα/~ = r sin θ cos(φ+ α)

= r sin(θ cosφ cosα− r sin θ sinφ sinα)

= x cosα− y sinα.
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5. Consider the six group elements for the symmetry of the equilateral triangle listed in Sec. ??.
As a six-by-six matrix, find the coefficients aij.

Solution:

(a) R1, The identity

(b) R2, Rotation by 120◦

(c) R3, Rotation by 240◦

(d) R4, Reflecting about an axis through the center of the triangle in the 30◦ direction

(e) R5, Reflecting about an axis through the center of the triangle in the 900◦ direction

(f) R6, Reflecting about an axis through the center of the triangle in the 150◦ direction

RiRj =


1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 6 5 1 3 2
5 4 6 2 1 3
6 5 4 3 2 1


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6. Using the commutation relations for angular momentum, [Lx, Ly] = i~Lz, and the definition
L± = Lx ± iLy, show that

|~L|2 = L2
z + L+L− − ~Lz.

Solution:

L2
z + L+L− − ~Lz = L2

z + (Lx + iLy)(Lx − iLy)− ~Lz
= L2

z + L2
x + L2

y − i[Lx, Ly]− ~Lz
= L2

x + L2
y + L2

z X
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7. In terms of `, m1 and m2 find expressions for:

(a) 〈`m1|L2
x|`m2〉 (Warning: this is messy)

(b) 〈`m1|L2
x + L2

y|`m2〉

Solution:

L+ = Lx + iLy,

L− = Lx − iLy,

Lx =
1

2
(L+ + L−)

L2
x =

1

4
(L2

+ + L2
− + L+L− + L−L+)

a)

L+|`,m2〉 = ~
√
`(`+ 1)−m2

2 −m2|`,m2 + 1〉,

L2
+|`,m2〉 =

√
`(`+ 1)−m2

2 −m2

·
√
`(`+ 1)− (m2 + 1)2 − (m2 + 1)|`,m2 + 2〉,

L2
−|`,m2〉 =

√
`(`+ 1)−m2

2 +m2

·
√
`(`+ 1)− (m2 − 1)2 − (m2 − 1)|`,m2 − 2〉.

〈`,m1|L2
+|`m2〉

= {[`(`+ 1)−m2
2 −m2][`(`+ 1)− (m2 + 1)2 − (m2 + 1)]}1/2δm2+2,m1 , (1)

〈`,m1|L2
−|`m2〉

= {[`(`+ 1)−m2
2 +m2][`(`+ 1)− (m2 − 1)2 − (m2 − 1)]}1/2δm2−2,m1~2, (2),

〈`,m1|
1

2
(|~L|2 − L2

z|`,m2〉 = δm1,m2

1

2
[`(`+ 1)−m2

1]~2, (3)

answer = [(1) + (2) + (3)]

b)

〈`m1|(L2
x + L2

y)|`m2〉 = 〈`m1||~L|2 − L2
z|`m2〉

= ~2[`(`+ 1)−m2
1]δm1,m2
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8. Consider a particle of mass m in a spherical well of radius R, where the potential is +∞ for
r > R and zero for r < R.

(a) Find the ground state energy.

(b) Describe how one would find the energy of the first excited state of the same well.

(c) If the particle is an electron and the radius of the well is 0.15 nm, give a numerical value
for the energy of the ground state in eV.

Solution:
a) For ` = 0, u ∼ sin kr,

kR = nπ, k0 = π/R,

E =
~2π2

2mR2
.

b) For ` = 1, u ∼ (sin(kr)/kr − cos(kr).

0 =
sin kr

kr
− cos kr,

tan(kr) = kr, transcendental eq..

c) Use the fact that ~c = 197.327 eV nm, and mc2 = 0.511× 106 eV.

E0 =
(197.327)2

2 · 0.511× 106
π2 1

0.152

= 16.7 eV.
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9. (a) Estimate the ground state binding energies of the following atoms. You can use the fact
that the binding energy for hydrogen is 13.6 eV, the mass of an electron is 0.511 MeV
the mass of a muon is 105.7 MeV, the mass of a proton is 938.3 MeV and the charge of
Pb is 82. Then scale the hydrogen values to get the desired results. The Bohr radius of
H is 0.053 nm.

i. e, Pb
ii. µ−, p
iii. e+e−

iv. p̄, P b

The mass of a muon is 205 times larger than that of an electron.

(b) For the same cases above, find the associated Bohr radii. (Treat the Pb nucleus as a
point particle)

Solution:
Remember that the energies are proportional to

E = −Ze
2

2a0
, a0 =

~2

µe2
.

a,i.) Z = 82, E = (−13.6) · 822 eV =-91.4 keV
a,ii.)

µ =
mµmp

mµ +mp

=
105.7 · 938.3

1044
= 95.0 MeV,

= 186me,

E0 = −186 · 13.6 = −2.53 keV

a,iii.)

µ = me/2,

E0 = −6.8 eV.

a,iv.)

µ = 938 = 1835me,

Z = 82,

E0 = −1835 · 13.6 · 822 = −167 MeV.

b,i.)

a =
1

82
a0 = 0.0645 nm.

b,ii.)

µ = me · 186

a = a0/186 = 0.02845 nm
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b,iii.)

a = 2a0 = 0.106 nm

b,iv.)

a = a0
1

82

me

mp

= 3.5× 10−16 m.

This last number is even smaller than the proton itself – so the idea that the Pb nucleus can be
treated as a point particle is rather ridiculous.
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10. For the Hydrogen atom, calculate the expectation of the operator X between the ground state
and each of the four n = 2 states. You can express answer in terms of a0.

Solution:

x =
1

2
(reiφ + r−iφ) sin θ,

By symmetry,

〈n = 1|x|n = 2, ` = 0〉 = 0,

〈n = 1|x|n = 2, ` = 1,m = 0〉 = 0.

〈n = 1|re−iφ sin θ|n = 2, ` = 1,m = 1〉 =

∫
dr r3Rn=1(r)Rn=2,`=1(r)

·
∫
d cos θdφY`=0,m=0(θ, φ)e−iφ sin θY`=1,m=1(θ, φ)

= −
∫
dr r3Rn=1(r)Rn=2,`=1(r)

∫
dφ

√
3

8π

√
1

4π

∫
d cos θ sin2 θ

= −
√

3

8

∫
dr r3Rn=1(r)Rn=2,`=1(r).

From Eq. (4-75)

= −
√

3

8

2

a
3/2
0

1

(2a0)3/2
1

a0
√

3

∫
dr r4e−r/a0

= −a0
4

4!,

〈n = 1|x|n = 2, ` = 1,m = ±1〉 = ∓3a0.
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11. Prove the following recurrence relation for spherical Bessel functions:

j`+1(z) = −j′`(z) +
`

z
j`(z).

To accomplish this, assume the equation is true and that j`(z) is a solution to:

−j′′` (z)− 2

z
j′`(z) +

`(`+ 1)

z2
j`(z) = j`(z).

Then show that using the assumed expression for j`+1(z) will be a solution to:

−j′′`+1(z)− 2

z
j′`+1(z) +

(`+ 1)(`+ 2)

z2
j`+1(z) = j`+1(z).

This last expression is the same differential equation as the one just above, but with `→ `+1.

Solution:
Take derivative of 1st eq:

j′`+1 = −j′′` −
`

z2
+
`

z
j′`.

Using the differential equation for the Bessel function,

=
2

z
j′` −

`(`+ 1)

z2
j` + j` −

`

z2
j` +

`

z
j′`

=
2 + `

z2
j′` −

`(`+ 2)

z2
j` + j`.

Taking another derivative,

j′′`+1 =
−(2 + `)

z2
j′` +

2 + `

z
j′′` +

2`(`+ 2)

z3
j` −

`(`+ 2)

z2
j′` + j′`

=
2 + `

z
j′′` +

(
−(`+ 1)(`+ 2)

z2
+ 1

)
j′` +

2`(`+ 2)

z3
j`. (a).

We need to show

−j′′`+1 −
2

z
j`+1 +

(`+ 1)(`+ 2)

z2
j`+1 − j`+1 =?0.

Note that ` has been replaced with ` + 1. Combining (a) with the expression we are trying to
prove,

0 =?

[
−(`+ 2)

z

]
j′′` +

[
(`+ 1)(`+ 2)

z2
− 1− 2(`+ 2)

z2
− (`+ 1)(`+ 2)

z2
+ 1

]
j′`

+

[
−2`(`+ 2)

z3
+

2`(`+ 2)

z3
− 2

z
+
`(`+ 1)(`+ 2)

z3
− `

z

]
j`

=
`+ 2

z

{
−j′′z − 2

z
j′` − j` +

`(`+ 1)

z2
j`

}
.

The last expression is indeed zero as it is the differential equation for Bessel functions.
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12. Find the Clebsch-Gordan coefficient

〈` = 1, s = 1, j = 0,m = 0|` = 1, s = 1,m` = 1,ms = −1〉

Solution:

|j = 2,m = 2〉 = |m` = 1,ms = 1〉
, J−|J,m〉 =

√
J(J + 1)−m2 +m|J,m− 1〉

J−|J = 2,m = 2〉 = (L− + S−)|m`=1,ms = 1〉,
√

6− 4 + 2|J = 2,m = 1〉 =
√

2− 1 + 1|m` = 0,ms = 1〉+
√

2|m` = 1,ms = 0〉,

|J = 2,m = 1〉 =
1√
2
|m` = 0,ms = 1〉+

1√
2
|m` = 1,ms = 0〉.

By orthogonality,

|J = 1,m = 1〉 =
1√
2
|m` = 0,ms = 1〉 − 1√

2
|m` = 1,ms = 0〉.

Now lowering the m = 2 states,

√
6|J = 2,m = 0〉 =

1√
2

{√
2|m` = −1,ms = 1〉+

√
2|m` = 0,ms = 0〉

}
+

1√
2

{√
2|m` = 0,ms = 0〉+

√
2|m` = 1,ms = −1〉

}
,

|J = 2,m = 0〉 =
1√
6
|m` = −1,ms = 1〉+

1√
6
|m` = 1ms = −1〉

+
2√
6
|m` = 0,ms = 0〉.

Now,lowering the J = 1 state,

|J = 1,m = 0〉 =
1√
2
|m` = −1,ms = 1〉 − 1√

2
|m` = 1,ms = −1〉.

Again, by orthogonality,

|J = 0,m = 0〉 =
1√
3
{|m` = 1,ms = −1〉+ |m` = −1,ms = 1〉 − |m` = 0,ms = 0〉} ,

〈J = 0,m = 0|m` = 1,ms = −1〉 =
1√
3
.

Another way to solve the same problem would be to begin with

|J = 0,m = 0〉 = A|m` = 1,ms = −1〉+B|m` = −1,ms = 1〉+ C|m` = 0,ms = 0〉,

then solve for the coefficients by requiring J + |J = 0,m = 0〉 = 0.
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13. Calculate the Clebsch-Gordan Coefficients 〈` = 12, s = 1, j = 12,mj = 12|` = 12, s =
1,m`,ms〉 for all m` and ms.

Solution:

|J = 13,mj = 13〉 = |m` = 12,ms = 1〉,
√

13 · 14− 132 + 13|J = 13,mj = 12〉 = (12 · 13− 122 + 12)1/2|m` = 11,ms = 1〉
+ 21/2|m` − 12,ms = 0〉,

|J = 13,mj = 12〉 =
1√
26

{√
24|m` = 11,ms = 1〉+

√
2|m` = 12,ms = 0〉

}
.

By orthogonality,

|J = 12,mj = 12〉 =

1√
26

{√
2|m` = 11,ms = 1〉 −

√
24|m` = 12,ms = 0〉

}
,

〈J = 12,mj = 12|` = 12, s = 1,m` = 11,ms = 1〉 =
1√
13
,

〈J = 12,mJ = 12|` = 12, s = 1,m` = 12,ms = 0〉 = −
√

12√
13
.

All others are zero.
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14. An electron is in an ` = 1 state of a hydrogen atom. It experiences a spin orbit interaction,

Vs.o. = α~L · ~S

and also feels an external magnetic field

VB = −µ~B ·
(
~L+ 2~S

)
.

a) Using the basis

|J = 3/2,M = 3/2〉 =


1
0
0
0
0
0

 , |J = 3/2,M = −3/2〉 =


0
1
0
0
0
0



|J = 3/2,M = 1/2〉 =


0
0
1
0
0
0

 , |J = 1/2,M = 1/2〉 =


0
0
0
1
0
0



|J = 3/2,M = −1/2〉 =


0
0
0
0
1
0

 , |J = 1/2,M = −1/2〉 =


0
0
0
0
0
1


write the Hamiltonian components Vs.o. and VB as 6×6 matrices. To assist you, the |J,M〉
states can be written in the |m`,ms〉 basis as

|J = 3/2,mj = 3/2〉 = |m` = 1,ms = 1/2〉,
|J = 3/2,mj = −3/2〉 = |m` = −1,ms = −1/2〉,√

15/4− 9/4 + 3/2|J = 3/2,mj = 1/2〉 =
√

2|0, 1/2〉+
√

3/4− 1/4 + 1/2| − 1,−1/2〉,

|J = 3/2,mj = 1/2〉 =

√
2

3
|0, 1/2〉+

1√
3
|1,−1/2〉,

|J = 1/2,mj = 1/2〉 =
1√
3
|0, 1/2〉 −

√
2

3
|1,−1/2〉,

|J = 3/2,mj = −1/2〉 =

√
2

3
|0,−1/2〉+

1√
3
| − 1, 1/2〉,

|J = 1/2,mj = −1/2〉 =
1√
3
|0,−1/2〉 −

√
2

3
| − 1, 1/2〉.

b) What are the six eigenvalues of H?
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Solution:
a) In the J,M basis, Vs.o. is diagonal. Use the fact that

~L · ~S =
1

2
(| ~J |2 − |~L|2 − |~S|2) =

~2

2
{J(J + 1)− L(L+ 1)− S(S + 1)},

which gives

〈J = 3/2,M |Hs.o.|J = 3/2,M〉 =
α~2

2
,

〈J = 1/2,M |Hs.o.|J = 1/2,M〉 = −α~2.

Vs.o. =
α~2

2


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −2 0 0
0 0 0 0 1 0
0 0 0 0 0 −2

 .

To calculate VB one must calculate the overlap 〈J,M |VB|J ′,M ′〉 for all 36 combinations of
J,M, J ′,M ′. Each state must be expanded in the m`,ms basis as given above. Fortu-
nately, there is no overlap unless M = M ′. Thus, there are only four off-diagonal terms:
〈J = 3/2,M = 1/2|VB|J = 1/2,M = 1/2〉, 〈J = 3/2,M = −1/2|VB|J = 1/2,M = −1/2〉
and the Hermitian conjugates.
First, to calculate the six diagonal elements,

〈J = 3/2,M = 3/2|VB|J = 3/2,M = 3/2〉 = −µ~B(1 + 2 · 1/2) = −2µ~B,
〈J = 3/2,M = −3/2|VB|J = 3/2,M = −3/2〉 = 2µ~B,
〈J = 3/2,M = 1/2|VB|J = 3/2,M = 1/2〉 = −µ~B[(2/3)(0 + 2 · 1/2) + (1/3)(1 + 2 · (−1/2))]

= −2

3
µ~B,

〈J = 1/2,M = 1/2|VB|J = 1/2,M = 1/2〉 = −µ~B[(1/3)(0 + 2 · 1/2) + (2/3)(1 + 2 · (−1/2))]

= −1

3
µ~B,

〈J = 3/2,M = −1/2|VB|J = 3/2,M = −1/2〉 =
2

3
µ~B,

〈J = 1/2,M = −1/2|VB|J = 1/2,M = −1/2〉 =
1

3
µ~B.

The off-diagonal elements are

〈J = 3/2,M = 1/2|VB|J = 1/2,M = 1/2〉 = 〈J = 1/2,M = 1/2|VB|J = 3/2,M = 1/2〉 = −µ~B{
√

2

3
(0− 1)−

√
23(1− 1)}

=

√
2

3
µ~B,

〈J = 3/2,M = −1/2|VB|J = 1/2,M = −1/2〉 = 〈J = 1/2,M = −1/2|VB|J = 3/2,M = −1/2〉

= −
√

2

3
µ~B,
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In matrix form,

VB = µ~B



−2 0 0 0 0 0
0 2 0 0 0 0

0 0 −2/3
√

2/3 0 0

0 0
√

2/3 −1/3 0 0

0 0 0 0 2/3 −
√

2/3

0 0 0 0 −
√

2/3 1/3


b) The first two eigenvalues can be read off the matrices

E1 =
α~2

2
− 2µ~B,

E2 =
α~2

2
+ 2µ~B.

The last four eigenvalues can be found by realizing that the remaining 6×6 matrix can be reduced
to two 2× 2 submatrices. The first 2× 2 submatrix is

H3,4 =

(
α~2/2− (2/3)µ~B (

√
2/3)µ~B

(
√

2/3)µ~B −α~2 − (1/3)µ~B

)
= (−α2/4− µ~B/2)I + (3α2/4− µ~B/6)σz + µ~B

√
2

3
σx.

The eigenvalues are then

E3,4 = −α2/4− µ~B/2±
√

(3α2/4− µ~B/6)2 + (2/9)(µ~B)2.

To obtain the last two eigenvalues, one first writes down the last submatrix,

H5,6 =

(
α~2/2 + (2/3)µ~B −(

√
2/3)µ~B

−(
√

2/3)µ~B −α~2 + (1/3)µ~B

)
= (−α2/4 + µ~B/2)I + (3α2/4 + µ~B/6)σz − µ~B

√
2

3
σx.

The eigenvalues are

E5,6 = −α2/4 + µ~B/2±
√

(3α2/4 + µ~B/6)2 + (2/9)(µ~B)2.
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15. A spin 1/2 particle is bound to a fixed center by a spherically symmetric potential. The
particle is in an ` = 0 state with spin-up, i.e.

Ψ(~r,m) = ψ(r)

(
1
0

)
.

In terms of ψ(r) and ~r, write the matrix element for

〈~r,ms|~σ · ~r|Ψ〉

(a) for ms = 1/2

(b) for ms = −1/2

Solution:
a)

~σ · ~r = xσx + yσy + zσz.

For the matrix element, the spin and spatial parts factorize,

〈~r,ms|~σ · ~r|Ψ〉 = χ†s~σχ↑ · 〈~r|ψ〉.

For spin-up, only the σz term contributes.

〈~r,ms = 1/2|~r · ~σ|Ψ〉 =

(
1
0

)†
σx

(
1
0

)
〈~r|z|ψ〉

= ψ(r)z = ψ(r)r cos θ.

b) For spin-down only the σx and σy terms contribute

〈~r,ms = −1/2|~r · ~σ|Ψ〉 =

(
0
1

)†
σx

(
1
0

)
〈~r|x|ψ〉

+

(
0
1

)†
σy

(
1
0

)
〈~r|y|ψ〉

= xψ(r) + iyψ(r) = ψ(r)r sin θeiφ
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