Chapter 3 - Homework Solutions

1. Using the equations of motion for the wave function, show that the density and current defined by

$$
\begin{aligned}
& \rho(\vec{r}, t)=e|\psi(\vec{r}, t)|^{2} \\
& \vec{j}(\vec{r}, t)=\frac{-i e \hbar}{2 m}\left(\psi^{*}(\vec{r}, t) \nabla \psi(\vec{r}, t)-\left(\nabla \psi^{*}(\vec{r}, t)\right) \psi(\vec{r}, t)\right)-\frac{e \vec{A}}{m c}|\psi(\vec{r}, t)|^{2},
\end{aligned}
$$

satisfies the continuity equation,

$$
\partial_{t} \rho+\nabla \cdot \vec{j}=0 .
$$

Solution:

$$
\begin{aligned}
\frac{d \rho}{d t} & =\frac{i}{\hbar}\left(H \psi^{*}\right) \psi-\frac{i}{\hbar} \psi^{*} H \psi \\
& =\frac{i}{\hbar}\left\{\frac{\hbar^{2}}{2 m}\left(\nabla^{2} \psi^{*}\right) \psi-\frac{\hbar^{2}}{2 m} \psi^{*}\left(\nabla^{2} \psi\right)\right. \\
& -\frac{\hbar e}{m}\left(\vec{A} \cdot \nabla \psi^{*}\right)-\frac{\hbar e}{m} \psi^{*}(\vec{A} \cdot \nabla \psi \\
& \left.-\psi^{*} \frac{e^{2}|\vec{A}|^{2}}{2 m} \psi+\left(\frac{e^{2}|\vec{A}|^{2}}{2 m} \psi^{*}\right) \psi\right\}
\end{aligned}
$$

The last two terms cancel. Thus,

$$
\frac{d \rho}{d t}=\nabla \cdot\left\{\frac{\left(i \nabla \psi^{*}\right) \psi-\psi^{*}(i \nabla \psi)}{2 m}-\frac{e \vec{A}}{m} \psi^{*} \psi\right\} .
$$

The r.h.s. is $\nabla \cdot \vec{j}$.
2. Consider a particle of charge e traveling in the electromagnetic potentials

$$
\mathbf{A}(\mathbf{r}, t)=-\nabla \Lambda(\mathbf{r}, t), \quad \Phi(\mathbf{r}, t)=\frac{1}{c} \frac{\partial \Lambda(\mathbf{r}, t)}{\partial t}
$$

where $\Lambda(\mathbf{r}, t)$ is an arbitrary scalar function.
(a) What are the electromagnetic fields described by these potentials?
(b) Show that the wave function of the particle is given by

$$
\psi(\mathbf{r}, t)=\exp \left[-\frac{i e}{\hbar c} \Lambda(\mathbf{r}, t)\right] \psi_{0}(\mathbf{r}, t)
$$

where ψ^{0} solves the Schrödinger equation with $\Lambda=0$.
(c) Let $V(\mathbf{r}, t)=e \Phi(t)$ be a spatially uniform time varying potential. Show that

$$
\psi(\mathbf{r}, t)=\exp \left[-\frac{i e}{\hbar} \int_{-\infty}^{t} \Phi\left(t^{\prime}\right) d t^{\prime}\right] \psi_{0}(\mathbf{r}, t)
$$

is a solution if ψ_{0} is a solution with $\Phi=0$.

Solution:

a)

$$
\begin{aligned}
\vec{E} & =\frac{1}{c}\left(\nabla \partial_{t} \Lambda-\nabla \partial_{t} \Lambda\right)=0 \checkmark \\
\vec{B} & =\nabla \times(\nabla \Lambda), \text { or } B_{i}
\end{aligned}=\epsilon_{i j k} \partial_{j} \partial_{k} \Lambda=0 \quad .
$$

b) We must show that $i \hbar \partial_{t} \psi=H \psi$.

$$
\begin{aligned}
i \hbar \partial_{t} \psi & =\frac{e}{c}\left(\partial_{t} \Lambda\right) \psi+e^{-i e \Lambda /(\hbar c)} H_{0} \psi_{0} \\
H \psi & =\frac{(-i \hbar \nabla-e \vec{A} / c)^{2}}{2 m} e^{-i e \Lambda /(\hbar c)} \psi_{0}+\frac{e}{c}\left(\partial_{t} \Lambda\right) \psi \\
(-i \hbar \nabla-e \vec{A} / c) e^{-i e \Lambda /(\hbar c)} \psi_{0} & =e^{-i e \Lambda /(\hbar c)}\left(-i \hbar \nabla \psi_{0}-e \vec{A} / c-(e / c) \nabla \Lambda\right) \psi_{0}
\end{aligned}
$$

The last two terms cancel because $\vec{A}=-\nabla \Lambda$. One can then see verify $i \hbar \partial_{t} \psi=H \psi$.
c) Let

$$
\Lambda(t)=c \int_{-\infty}^{\infty} d t^{\prime} \Phi\left(t^{\prime}\right)
$$

From above,

$$
\psi=e^{-i e \Lambda /(\hbar c)} \psi_{0}=e^{-(i e / \hbar) \int_{-\infty}^{t} d t^{\prime} \Phi\left(t^{\prime}\right)} \psi_{0}
$$

3. For a gauge transformation, described in Eq. (??), including the associated the phase change to the wave function ψ, described in Eq. (??),
(a) Show that the charge density $e \psi^{*} \psi$ is unchanged by the gauge transformation
(b) Show that the current

$$
\vec{j}=\frac{e}{2 m}\left[\psi^{*}(-i \hbar \nabla \psi)+\left(i \hbar \nabla \psi^{*}\right) \psi\right]-\frac{e}{m c} \vec{A} \psi^{*} \psi
$$

is unchanged.
(c) Show that $\langle\chi| H|\psi\rangle$ is unchanged in a gauge transformation where Λ is independent of time.

Solution:

a)

$$
\psi=e^{-i e \Lambda /(\hbar c)} \psi_{0}, \quad \psi^{*} \psi=\psi_{0}^{*} \psi_{0}
$$

b)

$$
\begin{aligned}
\vec{j} & =\frac{e}{2 m} e^{i e \Lambda /(\hbar c)} \psi_{0}^{*}(-i \hbar \nabla-2 e \vec{A} / c) \psi_{0}+\frac{e}{2 m}\left(i \hbar \nabla\left(e^{-i e \Lambda /(\hbar c)} \psi_{0}^{*}\right)\right) \psi 0 e^{i e \Lambda /(\hbar c)} \\
& =\frac{e}{2 m} \psi_{0}^{*}\left(-i \hbar \nabla \psi_{0}\right)+\frac{e}{2 m}\left(i \hbar \nabla \psi_{0}^{*}\right) \psi_{0}-\frac{e}{m} \psi_{0}^{*} \frac{e \vec{A}}{c} \psi_{0}+\frac{e}{m}(i \hbar) \frac{i e}{\hbar c}(\nabla \Lambda) \psi_{0}^{*} \psi_{0}
\end{aligned}
$$

Let $\vec{A}=\vec{A}_{0}-\nabla \Lambda$,

$$
\begin{aligned}
\vec{j} & =\frac{e}{2 m}\left[\psi_{0}^{*}\left(-i \hbar \nabla-e \vec{A}_{0} / c\right) \psi+\left(\left(i \hbar \nabla-e \vec{A}_{0} / c\right) \psi_{0}^{*}\right) \psi_{0}\right] \\
& =\vec{j}_{0} \quad \checkmark
\end{aligned}
$$

c)

$$
\begin{aligned}
\chi^{*} & =\chi_{0} e^{-i e \Lambda /(\hbar c)}, \\
\psi & =e^{-i e \Lambda /(\hbar c)} \psi_{0}, \\
H & =V(r)+\left(-i \hbar \nabla-e \vec{A}_{0} / c+e \nabla \Lambda / c\right)^{2} / 2 m, \\
H_{0} & =V(r)+\left(-i \hbar \nabla-e \vec{A}_{0} /\right)^{2} / 2 m, \\
\left(-i \hbar \nabla-e \vec{A}_{0} / c+e \nabla \Lambda / c\right) \psi & =e^{-i e \Lambda /(\hbar c)}\left(-i \hbar \nabla-e \vec{A}_{0} / c\right) \psi_{0} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\chi H \psi & =\chi e^{-i e \Lambda /(\hbar c)} H_{0} \psi_{0} \\
& =\chi_{0} H_{0} \psi_{0}
\end{aligned}
$$

4. Find (or guess) the function $\Lambda(\vec{r}, t)$ that corresponds to the gauge transformation in Eq. (??) responsible for re-expressing the vector potential in Eq. (??) to the form of Eq. (??), and show that both forms give the same magnetic field.

Solution:

Rewriting the question: Find the function $\Lambda(\vec{r}, t)$ that corresponds to the gauge transformation,

$$
\vec{A}(\vec{r}, t) \rightarrow \vec{A}(\vec{r}, t)+\nabla \Lambda, \quad \Phi(\vec{r}, t) \rightarrow \Phi(\vec{r}, t)-\frac{1}{c} \frac{\partial \Lambda(\vec{r}, t)}{\partial t}
$$

responsible for re-expressing the vector potential in the form

$$
A_{z}=0, A_{\rho}=0, A_{\phi}=\rho B / 2
$$

to the form

$$
A_{y}=B x, A_{x}=0, A_{z}=0
$$

a) For the first form,

$$
\begin{aligned}
& A_{\phi}=(1 / 2) B \rho \\
& A_{x}=-A_{\phi} \sin \phi, \quad A_{y}=A_{\phi} \cos \phi, \quad A_{z}=0, \\
& A_{x}=(-1 / 2) B \rho \frac{x}{\rho}=-(1 / 2) B y, \\
& A_{y}=(1 / 2) B \rho \frac{y}{\rho}=(1 / 2) B x
\end{aligned}
$$

Let $\Lambda=(-1 / 2) B x y$,

$$
\begin{aligned}
\vec{A}^{\prime} & =\vec{A}+(1 / 2) \nabla(B x y), \\
A_{x}^{\prime} & =0, \quad A_{y}^{\prime}=B x y
\end{aligned}
$$

b) For the first form

$$
B_{z}=\partial_{x} A_{y}-\partial_{y} A_{x}=\partial_{x}(B x / 2)-\partial_{y}(-B y / 2)=B
$$

For the second form

$$
\begin{equation*}
B_{z}=\partial_{x} A_{y}-\partial_{y} A_{x}=\partial_{x}(B x)=B \tag{0.1}
\end{equation*}
$$

5. The expression for the \bar{v}_{y} in Eq. (??) is only valid for non-relativistic velocities, where $|E| \ll$ $|B|$. For a uniform magnetic field $B \hat{z}$, with no electric field, consider the form for the vector potential in Eq. (??). Performing a relativistic boost (Lorentz transformation), but for non-relativistic velocities, in the y direction by a velocity v_{y}, what is the resulting zero ${ }^{\text {th }}$ component of the vector potential A_{0} ? Equating this with the electric scalar potential, express the strength of the resulting electric field in terms of v_{y} and B.

Solution:

In lab frame

$$
A^{0}=\Phi=-E x, A^{y}=B x
$$

Boosted

$$
\begin{aligned}
A^{0 \prime} & =\gamma \Phi+\gamma v A^{y} \\
& =\gamma x\left(-E+v_{y} B\right) .
\end{aligned}
$$

Choose $v_{y}=E / B$ to make electric field disappear. Thus, in this frame the motion is purely circular. Whereas, in the lab frame the average velocity is $v_{x}=E / B$, which matches our previous result.
6. In this problem, we reconsider the problem of a charged particle in the presence of both an electric and magnetic field, but do so in a different gauge. The electron is placed in a region of constant external magnetic field B directed along the z axis and of constant electric field E in the y direction.
(a) Choosing the vector potential to lie along the y axis and describe both the electric and magnetic fields, show that the Hamiltonian may be written in the form,

$$
H=\frac{P_{z}^{2}}{2 m}+\frac{P_{x}^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(x-x_{0}-v_{0} t\right)^{2}
$$

and find ω, and v_{0} in terms of E, B, e, m, k_{y} and c, where $\hbar k_{y}$ is the eigenvalue of P_{y}. Hint: Choose a gauge such that $\vec{E}=-(1 / c) \partial_{t} \vec{A}$.
(b) Show that Schrödinger's equation, $i(\partial / \partial t) \Psi=H \Psi$ is satisfied by the form

$$
\Psi(x, y, z, t)=e^{-i \epsilon_{n} t / \hbar+i m v_{0} x / \hbar+i k_{z} z+i k_{y} y} \phi_{n}\left(x-x_{0}-v_{0} t\right),
$$

where ϕ_{n} refers to a harmonic-oscillator wave function characterized by the frequency ω and $\epsilon_{n}=(n+1 / 2) \hbar \omega+m v_{0}^{2} / 2$.

Solution:

a) Choose the gauge

$$
A_{y}=B x-c E t, \quad A_{x}=A+z=0
$$

This will give $\vec{B}=B \hat{z}$ and $\vec{E}=E \hat{y}$. The Hamiltonian is then

$$
\begin{aligned}
H & =\frac{1}{2 m}\left\{P_{x}^{2}+P_{z}^{2}+\left(P_{y}-e B x / c+e E t\right)^{2}\right\} \\
& =\frac{1}{2 m}\left\{P_{x}^{2}+P_{y}^{2}+\left(p_{y}-e B x / c+e E t\right)^{2}\right\},
\end{aligned}
$$

where we have assumed that the solution is an eigenstate of P_{y} with eigenvalue p_{y}. H is now

$$
\begin{aligned}
H & =\frac{1}{2 m}\left(P_{x}^{2}+P_{z}^{2}\right)+\frac{e^{2} B^{2}}{2 m c^{2}}\left[x-(E / B) c t-p_{y} c /(e B)\right]^{2}, \\
& =\frac{1}{2 m}\left(P_{x}^{2}+P_{z}^{2}\right)+\frac{m \omega^{2}}{2}\left[x-x_{0}-v_{0} t\right]^{2}, \\
\omega & =\frac{e B}{m}, \quad x_{0}=p_{y} c /(e B), \quad v_{0}=(E / B) c .
\end{aligned}
$$

b) Applying the Hamiltonian to the form for Ψ above,

$$
\begin{aligned}
H \Psi & =e^{-i \epsilon_{n} t / \hbar+i m v_{0} x / \hbar+i k_{z} z+i k_{y} y}\left\{\frac{\hbar^{2} k_{z}^{2}}{2 m}+\frac{1}{2} m v_{0}^{2}+H\right\} \phi_{n}\left(x-x_{0}-v_{0} t\right) \\
& -i \hbar v_{0} e^{-i \epsilon_{n} t / \hbar+i m v_{0} x / \hbar+i k_{z} z+i k_{y} y} \partial_{x} \phi_{n}\left(x-x_{0}-v_{0} t\right) \\
& =\epsilon_{n} \Psi-i \hbar v_{0} e^{-i \epsilon_{n} t / \hbar+i m v_{0} x / \hbar+i k_{z} z+i k_{y} y} \partial_{x} \phi_{n}\left(x-x_{0}-v_{0} t\right)
\end{aligned}
$$

Next, look at $i \hbar \partial_{t} \Psi$,

$$
\begin{aligned}
i \hbar \partial_{t} \Psi & =\epsilon_{n} \Psi+e^{-i \epsilon_{n} t / \hbar+i m v_{0} x / \hbar+i k_{z} z+i k_{y} y} \partial_{t} \phi_{n}\left(x-x_{0}-v_{0} t\right) \\
& =\epsilon_{n} \Psi-i \hbar e^{-i \epsilon_{n} t / \hbar+i m v_{0} x / \hbar+i k_{z} z+i k_{y} y} v_{0} \partial_{x} \phi_{n}\left(x-x_{0}-v_{0} t\right) .
\end{aligned}
$$

The two expressions are identical. \checkmark

