
Chapter 13 – Homework Solutions

1. To show why derivatives are defined as shown in Eq. (??), show that

∂µx
2 = 2xµ, and ∂µx2 = 2xµ,

where x2 = x20 − x21 − x22 − x23.

Solution:

x2 = (x0)2 −
∑
i

(xi)2,

∂

∂xµ
=

{
2x0, µ = 0
−2xi, µ = i

= 2xµ.

Thus ∂/∂xµ behaves as a covariant (subscript) vector and should be represented as ∂µ.
Now, one can repeat with the change that one takes the derivative w.r.t. xµ,

x2 = (x0)2 −
∑
i

(xi)2,

∂

∂xi
= − ∂

∂xi
,

∂

∂xµ
=

{
2x0, µ = 0
2xi, µ = i

= 2xµ.

This shows that ∂/∂xµ behaves as a contravariant vector and should be represented as ∂µ.
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2. Consider a charged relativistic particle interacting with the electromagnetic field, and de-
scribed by the Klein-Gordon equation.[

(i~∂t − eA0)
2 + c2~2∂2x −m2c4

]
ψ(x, t) = 0

The electrostatic potential A0 is illustrated in the diagram below.

E-mc
I. II. eΦ

2 A0

Consider a solution for a particle incident from the left,

ψI(x, t) = e(−iEt+ikx)/~ +Be(−iEt−ikx)/~

ψII(x, t) = Ce(−iEt+ik
′x)/~,

where E =
√
m2c4 + k2.

Calculate the charge and current densities (include direction) in regions I and II for each of
the following three cases.

(a) eA0 < E −mc2.
(b) E −mc2 < eA0 < E +mc2.

(c) eA0 > E +mc2.

Solution:
a) The momenta on the right is

k′ =
√

(E − eA0)2 −m2, k′ is real

E − eA0 > mc2.

First BC

k(1−B) = k′C.

Second BC

C(1 + k′/k) = 2,

C = 2k/(k + k′)

B = (k = −k′)/(k + k′)
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Calculate currents and densities in region I

ρI = E

∣∣∣∣eikx +
(k − k′)
k + k′

e−ikx
∣∣∣∣2 ,

= E

{
1 +

(k − k′)2

(k + k′)2
+ 2

(k − k′)
(k + k′)

cos(2kx)

}
,

jI =
1

2

(
e−ikx +

k − k′

k + k′
eikx
)

(−i∂x)
(
eikx +

k − k′

k + k′
e−ikx

)
+

1

2

[
−i∂x

(
e−ikx +

k − k′

k + k′
eikx
)](

eikx +
k − k′

k + k′
e−ikx

)
=
k

2

{
1− (k − k′)2

(k + k′)2
+ 2i

(k − k′)
(k + k′)

sin(2kx)

}
+
k

2

{
1− (k − k′)2

(k + k′)2
− 2i

(k − k′)
(k + k′)

sin(2kx)

}
= k

{
1− (k − k′)2

(k + k′)2

}
=

4k2k′2

(k + k′)2
.

Now, do the same in region II

ρII = (E − eA0)
4k2

(k + k′)2
,

jII = k′
4k2

(k + k′)2
.

Indeed, the currents are the same on both sides of the barrier.
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b)

q′ =
√
m2 − (E − eA0)2 is positive and real

ΨII = Ce−q
′x.

First BC

1 +B = C

Second BC

k(1−B) = iq′C.

Solving the BC

C =
2k

k + iq′
,

B =
k − iq′

k + iq′
, note B∗B = 1.

The currents and densities are

ρI = E
∣∣eikx +Be−ikx

∣∣2 = E
{

2 +Be−2ikx +B∗e2ikx
}

= E {2 + 2BR cos(2kx) + 2BI sin(2kx)} ,

jI =
1

2

(
e−ikx +B∗eikx

)
(−i∂x)

(
eikx +Be−ikx

)
+ h.c.

=
(
k − k + kB2e2ikx − kBe−2ikx

)
+ h.c.

= 0,

ρII =
4k2

k2 + q′2
(E − eA0)e

−2q′x,

jII =
1

2

4k2

k2 + q′2

{
ike−2q

′x + h.c
}

= 0.

c)

k′ =
√

(E − eA0)2 −m2 is real.

Everything is same as in (a)

ρI = E

{
1 +

(k − k′)2

(k + k′)2
+ 2

(k − k′)
(k + k′)

cos(2kx)

}
,

jI =
4k2k′2

(k + k′)2
,

ρII = (E − eA0)
4k2

(k + k′)2
,

jII = k′
4k2

(k + k′)2
.

Note that ρII is negative, but jI = jII is positive. This represents anti-particles approaching from
right. The annihilate with particles coming in from left to produce particles reflected back to
left.
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3. Consider the same case as above, except with no electrostatic potential. Instead, consider a
different mass in region I and region II, with mII > mI . For each of the following two cases,
calculate the charge and current densities in regions I and II.

(a) E > mIIc
2

(b) E < mIIc
2

Solution:
Region I

E2k2 +m2, m = mI ,

ψI = eikx +Be−ikx.

Region II

E2 = k′2 + (m+ Φ)2, Φ = mII −mI ,

k′ =
√
E2 − (m+ Φ)2,

ψII = Ceik
′x.

a) k′ is real.

1 +B = C,

k(1−B) = k′C,

C =
2

1 + k′/k

=
2k

(k + k′)
,

B =
k − k′

k + k′
.

Calculating densities and currents

ρI = E

{
1 +

(k − k′)2

(k + k′)2
+ 2

(k − k′)
(k + k′)

cos(2kx)

}
,

jI = k(e−ikx +B∗eikx)(eikx −Be−ikx) + h.c.

= k{1− |B|2}

=
4k2k′

(k + k′)2
,

ρII = E|C|2

= E
4k2

(k + k′)2
,

jII = k′|C|2

=
4k′k2

(k + k′)2
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b) k′ is imaginary

q′ =
√

(m+ Φ)2 − E2,

ψII = Ce−q
′x,

C =
2k

k + iq′
,

B =
k − iq′

k + iq′
, |B|2 = 1,

ρ1 = E
{

(e−ikx +B∗eikx)(eikx +Be−ikx)
}

= E
{

2 +Be−2ikx +B∗e2ikx
}

jI =
k

2

{
(e−ikx +B∗eikx)(eikx −Be−ikx)

}
+ h.c.

=
k

2

{
1− 1−Be−2ikx +B∗e2ikx

}
+ h.c.

= 0,

ρII = |C|2Ee−2q′x,

=
4k2

k2 + q′2
e−2q

′x,

jII = 0.
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4. Consider the Dirac representation,

β =

(
I 0
0 −I

)
~α =

(
0 ~σ
~σ 0

)
and the chiral representation,

β =

(
0 −I
−I 0

)
~α =

(
~σ 0
0 −~σ

)
The spinors, u↑ and u↓, represent positive-energy eigenvalues of the Dirac equation assuming
the momentum is along the z axis.

(mβ + pzαz)u(pz) = Eu(pz) ,

The spin labels, ↑ and ↓ refer to the positive and negative values of the spin operator, which
in both representations is

Σz =

(
σz 0
0 σz

)
Write the four-component spinors u↑ and u↓ in terms of p, E and m :

(a) in the Dirac representation.

(b) in the chiral representation.

(c) in the limit pz → 0 for both representations.

(d) in the limit pz →∞ for both representations.

Solution:
To be have a +1 eigenvalue of Σz, the states must be of the form

u↑ =


a
0
b
0

 = e−iEt+ipz.

To have a -1 eigenvalue of Σz,

u↓ =


0
a
0
b

 e−iEt+ipz.

We need to find states such that

(mβ + pαz)u = Eu

a) Dirac rep.

β =

(
I 0
0 −I

)
, αz =

(
0 σz
σz 0

)
.
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Setting Hu↑ = Eu↑,

ma+ pb = Ea,

−mb+ pa = Eb,

a = b
p

E −m
,

u↑ =
p√

2E2 − 2mE


1
0

p/(E +m)
0

 , normalized

Now for u↓,

ma− pb = Ea,

−mb− pa = Eb,

a = b
−p

E −m
,

u↓ =
p

2E2 − 2mE


0
1
0

−p/(E +m)

 .

b) In the chiral representation. For u↑,

−mb+ pa = Ea,

−ma− pb = Eb,

a =
m

E − p
b,

u↑ =
m√

2E2 − 2Ep


1
0

−(E − p)/m
0

 .

For u↓,

−mb− pa = Ea,

−ma+ pb = Eb,

a = −(E − p)
m

b,

u↓ =
m√

2E2 − 2Ep


0

(E − p)/m
0
1

 .
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c) As p→ 0,
Dirac representation,

u↑ =
p√

2m(E −m)


1
0
0
0



=
p
√
E +m√

2m(E −m)(E +m)


1
0
0
0



=


1
0
0
0



Similarly,

u↓ =


0
0
1
0


In the chiral representation

u↑ =
m√
2m2


1
0
−1
0



=
1√
2


1
0
−1
0

 .

Similarly

u↓ =
1√
2


0
1
0
1
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d) As m→ 0, In Dirac representation

u↑ =
p√
2p2


1
0
1
0

 ,

=
1√
2


1
0
1
0

 ,

Similarly,

u↓ =
1√
2


0
1
0
−1

 ,

In Chiral representation,

u↑ =
m√

2E(E − p)


1
0
0
0

 ,

=
m
√

2p√
2E(E − p)(E + p)


1
0
0
0

 ,

=


1
0
0
0

 ,

Similarly,

u↓ =


0
0
0
1

 .
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5. Consider a solution to the Dirac equation for massless particles, u+(~p), where the + denotes
the fact that the solution is an eigenstate of the spin operator in the p̂ directions,

(~Σ · p̂)u+(~p, x) = u+(~p, x).

Show that the operator β operating on u+(p) gives a negative energy solution but is still an

eigenstate of ~Σ · p̂ with eigenvalue +1.

Solution:

{β, αi} = 0,

H = ~α · ~p,
{β,H} = 0,

Σi = − i
2
εijkαjαk,

{β, ~Σ · ~p} = pi{β,Σi} = 0

Hβ|ψ〉 = −βH|ψ〉
= −Eβ|ψ〉.

So β switches energy. In contrast,

(~Σ · ~p)β|ψ〉 = β(~Σ · ~p)|ψ〉.

So β leaves ~Σ · ~p unchanged, i.e.

(~Σ · ~p)|ψ±〉 = ±|ψ±〉,
(~Σ · ~p)β|ψ+〉 = β|ψ+〉.
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6. Show that the operator

P =
1

2Ep
(Ep + ~α · ~p+ βm)

(a) is a projector, i.e. P 2 = P .

(b) and that P |ψ〉 gives a positive-energy solution to the Dirac equation when operating on
any state |ψ〉,

(Ep − ~α · ~p− βm)P |ψ〉 = 0.

Solution:
a) Using the fact that β and α anti-commute and that {αi, αj 6=i} = 0 and that α2

i = β2 = I,

P 2 =
1

4E2
p

[
E2
p +m2 + |~p|2 + 2Ep(~α · ~p+ βm)

]
=

1

4E2
p

[
2E2

p + 2Ep(~α · ~p+ βm)
]

=
1

2Ep
(Ep + ~α · ~p+ βm) = P.

b)

(Ep − ~α · ~p− βm)P |ψ〉 =
1

2Ep
(Ep − ~α · ~p− βm)(Ep + ~α · ~p+ βm)|ψ〉

=
1

2Ep

[
E2
p −m2 − |~p|2

]
|ψ〉

= 0.
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7. Consider a massless spin half particle of charge e in a magnetic field in the ẑ direction described
by the vector potential

~A = Bxŷ.

The Hamiltonian is then

H = αx(−i~∂x) + αy(−i~∂y − eBx).

(a) Show that the Hamiltonian commutes with −i~∂y and −i~∂z.
(b) The wave function can then be written as

ψky ,kz(x, y, z) = eikyy+ikzzφky ,kz(x),

After setting ky = kz = 0, show that the lowest energy can be found by solving the
equation

E2φ±(x) = (−~2∂2x + e2B2x2 − e~BΣz)φ±(x).

(c) Show that the eigenvalues of the operator H2 are

E2
± = (2n+ 1∓ 1)e~B, n = 0, 1, 2·,

where the ± refers to eigenvalues of Σz. You can do this mapping to the harmonic
oscillator and then using the solutions to the harmonic oscillator from Chapter 3. Note
that when the the eigenvalue of Σz is +1, there exists a solution with E = 0.

Solution:
a) By inspection −i~∂y commutes with H because there is no y in H. Same for −i~∂z.
b)

H2 = −~2∂2x + (−i~∂y − eBx)2 − ~2∂2z − i~αxαyeB.

Set −i~∂y = ~ky and −i~∂z = ~kz. You can see that answer doesn’t depend on ky, as it just
changes position of center of H.O., and one can minimize energy by setting kz = 0, so just set
both to zero to find lowest energy, and

H2 = −~2∂2x + e2B2x2 − e~BΣz, Σz ≡ −iαxαy.

c) Because Σz commutes with H and because Σ2
z = I, one can see that eigenvalues of Σz are

±1. Thus, by noticing how this looks like a Harmonic Oscillator Hamiltonian (except for H2/2M
rather than for H where M is some fictional quantity which will drop out),

H2

2M
= − ~2

2M
∂2x +

1

2
M
e2B2

M2
x2 − e~B

2M
Σz.

Looks like H.O. with ω = eB/M , plus a constant addition to the energy of ∓ e~B
2M

= ∓~ω/2. The
energy eigenvalues are thus

E2
±

2M
= (n+ 1/2)~ω ∓ ~ω

2
,

E2
± = ((2n+ 1)∓ 1)e~B.X

13



8. Using the definition of field operators in Eq. (??), show that the Hamiltonian

H =

∫
d3r Ψ†(~r, t)(−i~~α · ∇+ βm)Ψ(~r, t)

=
∑
s,~p

Ep(b
†
s,~pbs,~p + d†s,~pds,~p − 1).

I.e. the vacuum energy for each mode is negative.

Solution:

Using

Ψi(~r, t) =
1√
V

∑
~p

√
m

Ep

∑
s

(
us,i(~p)e

−iEpt/~+i~p·~r/~bs,~p + vs,i(~p)e
iEpt/~−i~p·~r/~d†s,~p

)
.

H =
m

V

∫
d3r

∑
~p,s

∑
~p′,s′

1√
EpEp′

[
u†s(~p)us′(~p

′)

+ u†s(~p)vs′(~p
′)

+ v†s(~p)us′(~p
′)

+ v†s(~p)vs′(~p
′)
]
.

Using the fact that up and vp are eigenstates of the Dirac Hamiltonian with eigenvalues ±Ep
respectively,

H =
m

V

∫
d3r

∑
~p,s

∑
~p′,s′

1√
EpEp′

[
u†s(~p)e

iEpt/~−i~ṗ~r/~Ep′e
−iEp′ t/~+i~p′̇~r/~us′(~p

′)

+ u†s(~p)e
iEpt/~−i~ṗ~r/~(−Ep′)eiEp′ t/~−i~p′̇~r/~vs′(~p

′)

+ v†s(~p)e
−iEpt/~+i~ṗ~r/~Ep′e

−iEp′ t/~+i~p′̇~r/~us′(~p
′)

+ v†s(~p)e
−iEpt/~+i~ṗ~r/~(−Ep′)eiEp′ t/~−i~p′̇~r/~vs′(~p

′)
]
.

Using the fact that
∫
d3rei(~p−~p

′)·~r = V δ~p~p′ ,

H = m
∑
~p,s,s′

[
u†s(~p)us′(~p)b

†
~pb~p − e

2iEpt/~−2i~p·~r/~u†s(~p)vs′(−~p)b
†
~pd
†
~p)

+e−2iEpt/~+2i~ṗ~r/~v†s(~p)us′(−~p)d
†
~pb~p)− v

†
s(~p)vs′(~p)d~pd

†
~p′

]
.

Using the orthogonality relations for u and v,

H =
∑
~p,s

Ep(b
†
~pb~p − d~pd

†
~p)

=
∑
~p,s

Ep(b
†
~pb~p + d†~pd~p − 1).
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9. Using the definitions for αk and βk in Eq. (??),

(a) Show that

b†~kb~k − d
†
−~k
d−~k = α†αk − β†βk.

This demonstrates that the eigenstates of the new Hamiltonian are still eigenstates of
the charge operator written in the old basis.

(b) Show that the state
|0̃〉 ≡ cos θk|0〉+ sin θkd

†
−~k
b†~k|0〉

is destroyed by both αk and βk, where |0〉 is the vacuum in the old basis. Effectively,
this shows that |0̃〉 is the vacuum in the new basis.

Solution:
a) Suppressing the k indices

α† = cos θb† + sin θd,

β† = cos θd† − sin θb,

(α†α− β†β = (cos θb† + sin θd)(cos θ + sin θd†)− (cos θd† − sin θb)(cos θd− sin θb†)

= b†b cos2 θ − bb† sin2 θ + d†d(− cos2 θ) + dd† sin2 θ

+ b†d† cos θ sin θ + d†b† cos θ sin θ + db sin θ cos θ + bf sin θ cos θ.

Using the anti-communtation rules,

= b†b− sin2 θ − d†d+ sin2 θ

= b†b− d†d.

b)

|0̃〉 = cos θ|0〉+ sin θ|d†b†|0〉,
α|0̃〉 = (cos θb+ sin θd†){cos θ|0〉+ sin θd†b†|0〉}

= sin θ cos θd† + sin θ cos θbd†b†|0〉
= sin θ cos θd† − sin θ cos θd†bb†|0〉
= 0.

15


