
Chapter 12 – Homework Solutions

1. Consider the two electron holes in the p-shell of a neutral oxygen atom.

(a) What is the L− S − J of the ground state.

(b) If the atom is in a magnetic field of 0.01 Tesla, find the magnetic energies of the originally
degenerate 2J + 1 states.

Solution:
a) Consider 2 holes, S = 0, 1, so S = 1 is lowest because of Hund’s Rule #1.
L = 0, 1, 2 From permutation symmetry, L = 0, 2 if orbital WF is to be symmetric and L = 1
for orbital WF to be anti-symmetric. For spin WFs, S = 0 is anti-symmetric, while S = 1 is
symmetric. To have S = 1 and have overall WF being anti-symmetric, one needs L = 1.
Finally, last Hund’s rule prefers highest J , J = 2.

S = 1, L = 1, J = 2.

b) From lecture notes,

∆E = −ge~B
2mc

MJ

g = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
.

Plugging and chugging,

∆E = −ge~B
2mc

MJ ,

g = 1 +
6 + 2− 2

12
=

3

2
,

∆E = −3

2

e~
2mc

BMJ

= −3

2
MJ · 5.788× 10−5 × 0.01

= (8.68× 10−2)MJ eV
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2. One electron moves in a one-dimensional system and feels the interaction of two atoms. Ap-
proximate the interaction between the electrons and the atoms with the potential

V (x−R) = −βδ(x−R),

where R is the position of an atom. Use the adiabatic approximation to answer the following
questions.

(a) Given the two atoms are separated by a distance r, find a transcendental equation relating
k and r where the electronic binding energy is ~2k2/(2m).

(b) Find the potential between the two atoms at small r,

V (r → 0) ∼ V (r = 0)− αr,

that is, find V (r = 0) and α. Do this by expanding the transcendental equation in terms
of r. Hint: First, find V (r = 0) by solving the transcendental equation with r = 0.
Take derivatives of the transcendental equation with respect to r, then solve for dk/dr
at r = 0, and finally find dE/dr to obtain α.

(c) Find the potential between the two atoms at large r,

V (r →∞) = −γ exp(−2k∞r),

that is, find γ. Hint: Use first order perturbation theory, assuming the unperturbed wave
function is the bound state of one well, and the perturbation is the interaction with the
second well.

Solution:
a) place potentials at x = −r/2 and x = r/2. Define region I as x < −r/2, region II as
−r/2 < x < r/2 and r/2 < x as region III.

ψI = Aek(x+r/2), ψII = cosh(kx), ψIII = Ae−k(x−r/2),

BC1)A = cosh(kr/2),

BC2)− ka− k sin(kr/2) = −2mβA/~2,
−kA+ 2mβA/~2 = k sinh(kr/2),

−kA+
2mβA

~2
= k sinh(kr/2),

k tanh(kr/2) = −k +
2mβ

~2
,

tanh(kr/2) = −1 +
2mβ

~2k
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b)

tanh(kr/2) =
2mβ

~2k
,

at r = 0, k = 2mβ/~2, E = −(2mβ/~2)2
~2

2m
,

d

dr
tan(kr/2) =

d

dr

(
2mβ

~2k
− 1

)
,

k

2
= −2mβ

~2k2
dk

dr
,

dk

dr
= −m

2β2

~4
,

EB = E(r = 0) +
dE

dk

dk

dr
r

= −2mβ2

~2
+

~2k
m

2m2β2

~4
r

= −2mβ2

~2
+

2mβ2

~2
kr

= −2mβ2

~2
+

2mβ2

~2
r

2mβ

~2

= −2mβ2

~2
+ 4

m2β3

~4
r.

c)

ψ ≈
√
ke−k|r|,

k =
mβ

~2
(single well)

V =

∫
ψ∗(r)ψ(r)dr (−βδ(r − r0))

= −βke−2kr0 ,

= −mβ
2

~2
e−2kr0 .
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3. Consider a particle of mass M and charge e moving in the x− y plane under the influence of
a magnetic field in the z direction. Ignore motion in the z direction.

(a) Show that the vector potential,

~A =
B

2
(xŷ − yx̂) ,

describes a magnetic field in the z direction.

(b) Write the Schrödinger equation,(
~P − e ~A/c

)2
2M

ψ(r, φ) = Eψ(r, φ),

in cylindrical coordinates.

(c) Show that Lz commutes with the Hamiltonian.

(d) Assuming the solution is an eigenstate of Lz with eigenvalue m~,

ψ(r, φ) = eimφξm(r),

rewrite the Schrödinger equation for ξm(r).

(e) Extra Credit: Solve for ξm(r) and the eigenenergies for the case where m = 0.

Solution:

a)

(∇× ~A)z = ∂xAy − ∂yAx = B/2 +B/2 = B,

(∇× ~A)x = ∂yAz − ∂zAy = 0,

(∇× ~A)y = ∂zAz − ∂xAz = 0.

b)

~A =
B

2
rφ̂.

c)

∇ = ẑ∂z + r̂∂r +
φ̂

r
∂φ,

∇2 = ∂2z + ∂2r +
1

r2
∂2φ +

1

r
∂r,

Eψ = − ~2

2M
∇2ψ − ie~

Mc
~A · ∇ψ − ie~

2Mc
∇ · ~Aψ +

e2

2Mc2
| ~A|2ψ

= − ~2

2m

(
∂2z + ∂2r +

1

r
∂ +

1

r2
∂2φ

)
ψ − ie~B

2Mc
∂φψ +

e2

8Mc2
B2ψ,
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d)Because Lz = −i~∂φ and there is no φ dependence in H, Lz commutes with H.
e) {

− ~2

2M

(
∂2z + ∂2r +

1

r
∂ +

1

r2
∂2φ

)
+
me~
2Mc

B +
e2B2r2

8Mc2

}
ξm(r) = Eξm(r).

f) Set m = 0 and guess

ξm(r) = er
2/2σ2

.

Then

∂rξm(r) = − r

σ2
ξm(r),

∂2r ξm(r) =

(
− 1

σ2
+
r2

σ4

)
,

− ~2

2M

{
− 1

σ2
+
r2

σ4
− 1

σ2

}
+
e2B2r2

8Mc2
= E,

~2

2Mσ4
=

e2B2

8Mc2
,

σ2 =

√
4~2c2
e2B2

=
2~c
eB

E =
~
M

eB

2c
=
e~B
2Mc

=
1

2
~ω, ω =

eB

Mc
.
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4. Consider a surface with 10 electrons per µm2. Lowering the magnetic field, at what magnetic
field (in Tesla) do you find the first dip in conductivity due to the quantum Hall effect?

Solution:

n = 1013 cm−2,

B

c
=

2π~n
e

= 0.0414 Tesla.
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