Chapter 12 - Homework Solutions

1. Consider the two electron holes in the p-shell of a neutral oxygen atom.
(a) What is the $L-S-J$ of the ground state.
(b) If the atom is in a magnetic field of 0.01 Tesla, find the magnetic energies of the originally degenerate $2 J+1$ states.

Solution:

a) Consider 2 holes, $S=0,1$, so $S=1$ is lowest because of Hund's Rule \#1.
$L=0,1,2$ From permutation symmetry, $L=0,2$ if orbital WF is to be symmetric and $L=1$ for orbital WF to be anti-symmetric. For spin WFs, $S=0$ is anti-symmetric, while $S=1$ is symmetric. To have $S=1$ and have overall WF being anti-symmetric, one needs $L=1$.
Finally, last Hund's rule prefers highest $J, J=2$.

$$
S=1, L=1, J=2 .
$$

b) From lecture notes,

$$
\begin{aligned}
\Delta E & =-g \frac{e \hbar B}{2 m c} M_{J} \\
g & =1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}
\end{aligned}
$$

Plugging and chugging,

$$
\begin{aligned}
\Delta E & =-g \frac{e \hbar B}{2 m c} M_{J}, \\
g & =1+\frac{6+2-2}{12}=\frac{3}{2}, \\
\Delta E & =-\frac{3}{2} \frac{e \hbar}{2 m c} B M_{J} \\
& =-\frac{3}{2} M_{J} \cdot 5.788 \times 10^{-5} \times 0.01 \\
& =\left(8.68 \times 10^{-2}\right) M_{J} \mathrm{eV}
\end{aligned}
$$

2. One electron moves in a one-dimensional system and feels the interaction of two atoms. Approximate the interaction between the electrons and the atoms with the potential

$$
V(x-R)=-\beta \delta(x-R)
$$

where R is the position of an atom. Use the adiabatic approximation to answer the following questions.
(a) Given the two atoms are separated by a distance r, find a transcendental equation relating k and r where the electronic binding energy is $\hbar^{2} k^{2} /(2 m)$.
(b) Find the potential between the two atoms at small r,

$$
V(r \rightarrow 0) \sim V(r=0)-\alpha r
$$

that is, find $V(r=0)$ and α. Do this by expanding the transcendental equation in terms of r. Hint: First, find $V(r=0)$ by solving the transcendental equation with $r=0$. Take derivatives of the transcendental equation with respect to r, then solve for $d k / d r$ at $r=0$, and finally find $d E / d r$ to obtain α.
(c) Find the potential between the two atoms at large r,

$$
V(r \rightarrow \infty)=-\gamma \exp \left(-2 k_{\infty} r\right),
$$

that is, find γ. Hint: Use first order perturbation theory, assuming the unperturbed wave function is the bound state of one well, and the perturbation is the interaction with the second well.

Solution:

a) place potentials at $x=-r / 2$ and $x=r / 2$. Define region I as $x<-r / 2$, region II as $-r / 2<x<r / 2$ and $r / 2<x$ as region III.

$$
\begin{aligned}
\psi_{I} & =A e^{k(x+r / 2)}, \psi_{I I}=\cosh (k x), \quad \psi_{I I I}=A e^{-k(x-r / 2)}, \\
B C 1) A & =\cosh (k r / 2), \\
B C 2)-k a-k \sin (k r / 2) & =-2 m \beta A / \hbar^{2}, \\
-k A+2 m \beta A / \hbar^{2} & =k \sinh (k r / 2), \\
-k A+\frac{2 m \beta A}{\hbar^{2}} & =k \sinh (k r / 2), \\
k \tanh (k r / 2) & =-k+\frac{2 m \beta}{\hbar^{2}}, \\
\tanh (k r / 2) & =-1+\frac{2 m \beta}{\hbar^{2} k}
\end{aligned}
$$

b)

$$
\begin{aligned}
\tanh (k r / 2) & =\frac{2 m \beta}{\hbar^{2} k}, \\
\text { at } r=0, k & =2 m \beta / \hbar^{2}, E=-\left(2 m \beta / \hbar^{2}\right)^{2} \frac{\hbar^{2}}{2 m}, \\
\frac{d}{d r} \tan (k r / 2) & =\frac{d}{d r}\left(\frac{2 m \beta}{\hbar^{2} k}-1\right), \\
\frac{k}{2} & =-\frac{2 m \beta}{\hbar^{2} k^{2}} \frac{d k}{d r}, \\
\frac{d k}{d r} & =-\frac{m^{2} \beta^{2}}{\hbar^{4}}, \\
E_{B} & =E(r=0)+\frac{d E}{d k} \frac{d k}{d r} r \\
& =-\frac{2 m \beta^{2}}{\hbar^{2}}+\frac{\hbar^{2} k}{m} \frac{2 m^{2} \beta^{2}}{\hbar^{4}} r \\
& =-\frac{2 m \beta^{2}}{\hbar^{2}}+\frac{2 m \beta^{2}}{\hbar^{2}} k r \\
& =-\frac{2 m \beta^{2}}{\hbar^{2}}+\frac{2 m \beta^{2}}{\hbar^{2}} r \frac{2 m \beta}{\hbar^{2}} \\
& =-\frac{2 m \beta^{2}}{\hbar^{2}}+4 \frac{m^{2} \beta^{3}}{\hbar^{4}} r .
\end{aligned}
$$

c)

$$
\begin{aligned}
\psi & \approx \sqrt{k} e^{-k|r|} \\
k & =\frac{m \beta}{\hbar^{2}} \quad(\text { single well }) \\
V & =\int \psi^{*}(r) \psi(r) d r\left(-\beta \delta\left(r-r_{0}\right)\right) \\
& =-\beta k e^{-2 k r_{0}} \\
& =-\frac{m \beta^{2}}{\hbar^{2}} e^{-2 k r_{0}}
\end{aligned}
$$

3. Consider a particle of mass M and charge e moving in the $x-y$ plane under the influence of a magnetic field in the z direction. Ignore motion in the z direction.
(a) Show that the vector potential,

$$
\vec{A}=\frac{B}{2}(x \hat{y}-y \hat{x}),
$$

describes a magnetic field in the z direction.
(b) Write the Schrödinger equation,

$$
\frac{(\vec{P}-e \vec{A} / c)^{2}}{2 M} \psi(r, \phi)=E \psi(r, \phi)
$$

in cylindrical coordinates.
(c) Show that L_{z} commutes with the Hamiltonian.
(d) Assuming the solution is an eigenstate of L_{z} with eigenvalue $m \hbar$,

$$
\psi(r, \phi)=e^{i m \phi} \xi_{m}(r),
$$

rewrite the Schrödinger equation for $\xi_{m}(r)$.
(e) Extra Credit: Solve for $\xi_{m}(r)$ and the eigenenergies for the case where $m=0$.

Solution:

a)

$$
\begin{aligned}
& (\nabla \times \vec{A})_{z}=\partial_{x} A_{y}-\partial_{y} A_{x}=B / 2+B / 2=B \\
& (\nabla \times \vec{A})_{x}=\partial_{y} A_{z}-\partial_{z} A_{y}=0 \\
& (\nabla \times \vec{A})_{y}=\partial_{z} A_{z}-\partial_{x} A_{z}=0 .
\end{aligned}
$$

b)

$$
\vec{A}=\frac{B}{2} r \hat{\phi}
$$

c)

$$
\begin{aligned}
\nabla & =\hat{z} \partial_{z}+\hat{r} \partial_{r}+\frac{\hat{\phi}}{r} \partial_{\phi}, \\
\nabla^{2} & =\partial_{z}^{2}+\partial_{r}^{2}+\frac{1}{r^{2}} \partial_{\phi}^{2}+\frac{1}{r} \partial_{r}, \\
E \psi & =-\frac{\hbar^{2}}{2 M} \nabla^{2} \psi-\frac{i e \hbar}{M c} \vec{A} \cdot \nabla \psi-\frac{i e \hbar}{2 M c} \nabla \cdot \vec{A} \psi+\frac{e^{2}}{2 M c^{2}}|\vec{A}|^{2} \psi \\
& =-\frac{\hbar^{2}}{2 m}\left(\partial_{z}^{2}+\partial_{r}^{2}+\frac{1}{r} \partial+\frac{1}{r^{2}} \partial_{\phi}^{2}\right) \psi-\frac{i e \hbar B}{2 M c} \partial_{\phi} \psi+\frac{e^{2}}{8 M c^{2}} B^{2} \psi,
\end{aligned}
$$

d)Because $L_{z}=-i \hbar \partial_{\phi}$ and there is no ϕ dependence in H, L_{z} commutes with H.
e)

$$
\left\{-\frac{\hbar^{2}}{2 M}\left(\partial_{z}^{2}+\partial_{r}^{2}+\frac{1}{r} \partial+\frac{1}{r^{2}} \partial_{\phi}^{2}\right)+\frac{m e \hbar}{2 M c} B+\frac{e^{2} B^{2} r^{2}}{8 M c^{2}}\right\} \xi_{m}(r)=E \xi_{m}(r)
$$

f) Set $m=0$ and guess

$$
\xi_{m}(r)=e^{r^{2} / 2 \sigma^{2}}
$$

Then

$$
\begin{aligned}
\partial_{r} \xi_{m}(r) & =-\frac{r}{\sigma^{2}} \xi_{m}(r), \\
\partial_{r}^{2} \xi_{m}(r) & =\left(-\frac{1}{\sigma^{2}}+\frac{r^{2}}{\sigma^{4}}\right), \\
-\frac{\hbar^{2}}{2 M}\left\{-\frac{1}{\sigma^{2}}+\frac{r^{2}}{\sigma^{4}}-\frac{1}{\sigma^{2}}\right\}+\frac{e^{2} B^{2} r^{2}}{8 M c^{2}} & =E, \\
\frac{\hbar^{2}}{2 M \sigma^{4}} & =\frac{e^{2} B^{2}}{8 M c^{2}}, \\
\sigma^{2} & =\sqrt{\frac{4 \hbar^{2} c^{2}}{e^{2} B^{2}}}=\frac{2 \hbar c}{e B} \\
E & =\frac{\hbar}{M} \frac{e B}{2 c}=\frac{e \hbar B}{2 M c} \\
& =\frac{1}{2} \hbar \omega, \quad \omega=\frac{e B}{M c} .
\end{aligned}
$$

4. Consider a surface with 10 electrons per $\mu \mathrm{m}^{2}$. Lowering the magnetic field, at what magnetic field (in Tesla) do you find the first dip in conductivity due to the quantum Hall effect?

Solution:

$$
\begin{aligned}
n & =10^{1} 3 \mathrm{~cm}^{-2} \\
\frac{B}{c} & =\frac{2 \pi \hbar n}{e}=0.0414 \text { Tesla. }
\end{aligned}
$$

