
Chapter 1 – Homework Solutions

1. Photons, traveling along the z axis can be polarized either linearly along the x or y axis, or
a linear combination of the two states.

(a) Write the operator that rotate states by 45◦ about the z axis in terms of |x〉, |y〉 and the
corresponding bras.

Solution:
A rotation that rotates by 45◦ changes the states |x〉 and |y〉 as

|x〉 → (|x〉+ |y〉)/
√

2,

|y〉 → (|y〉 − |x〉)/
√

2.

The operator that performs the translation is, by inspection,

R =
1√
2

(|x〉+ |y〉)〈x|

+
1√
2

(|y〉 − |x〉)〈y|.

Or

R =
1√
2

(|x〉〈x|+ |y〉〈x| − |x〉〈y|+ |y〉〈y|) .
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(b) Choosing the basis,

|x〉 →
(

1
0

)
, |y〉 →

(
0
1

)
,

write the matrix that rotates the states by φ about the z axis.

Solution:
From the previous problem one can see that the answer is

R =

(
cosφ − sinφ
sinφ cosφ

)
. (0.1)
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(c) Right-hand circularly polarized (RCP) light is made of a linear combination of x and y
polarized light.

|R〉 =
1√
2

(|x〉+ i|y〉) .

Light traveling along the z axis passes through a thin slab of thickness Z whose index of
refraction, k = nω/c, is different for light polarized in the x and y directions. In terms of
nx, ny and Z find the polarization vector for light which enters the slab as right-circularly
polarized.
HINT: The wave has a form e−iωt+ikz. The two components have the same ω but different
k while in the medium.

Solution:

|Ψ〉 =
1√
2

(
eikxZ−iωt|x〉+ ieikyZ−iωt|y〉

)
.

The indices of refraction give

kx = nxω/c, ky = nyω/c.

Thus,

|Ψ〉 =
1√
2

(
e−iω(t−nxZ/c)|x〉+ ie−iω(t−nyZ/c)|y〉

)
.

Factoring the phase,

|Ψ(Z)〉 ∼ (|x〉+ ieiω(ny−nx)Z/c|y〉)/
√

2.
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(d) Find the density matrix for right-circularly polarized light in the basis defined above.

Solution:

ρ = |Ψ(Z)〉〈Ψ(Z)|
= (|x〉〈x|+ i|y〉〈x| − i|x〉〈y|+ |y〉〈y|) /2

=
1

2

(
1 −i
i 1

)
.
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(e) Using the basis described above, write the density matrix for light that is an incoherent
mixture, 50% polarized along the x direction and 50% along the y direction.

Solution:
Average the density matrix for LCP and for RCP

ρ =
1

4
(|x〉〈x|+ i|y〉〈x| − i|x〉〈y|+ |y〉〈y|)

=
1

4
(|x〉〈x| − i|y〉〈x|+ i|x〉〈y|+ |y〉〈y|)

=
1

2

(
1 0
0 1

)
.
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2. Considering a photon’s polarization, calculate 〈x|R(φ)|x〉 for φ = π/2, π, 2π, where the rota-
tion is about the z axis.

Solution:
The states |x〉 and |y〉 rotate amongst one another like the x̂ and ŷ,

|x′〉 = cosφ|x〉+ sinφ|y〉,
|y′〉 = cosφ|y〉 − sinφ|x〉.

The overlap of |x′〉 with the original state is

〈x′|x〉 = cosφ

=


0, φ = π/2,
−1, φ = π,
1, φ = 2π.
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3. For a spin 1/2 particle, calculate 〈z,+|R(θ)|z,+〉, for the same angles, θ = π/2, π, 2π, when
the rotation is about the y axis.

Solution:
The rotation operator is

R(θ) = e−i
~S·~θ/~

= e−iσyθ/2

= cos(θ/2)− iσy sin(θ/2).

Given that the original state is (
1
0

)
,

and that

σy

(
1
0

)
= i

(
1
0

)
,

the overlap of the rotate state with the original state is(
1
0

)†
R(θ)

(
1
0

)
= cos(θ/2)

=

 1/
√

2, θ = π/2,
0, θ = π
−1, θ = 2π.

Note that you rotate by 2π but end up with a different (only by a sign) state.
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4. Show that the unit matrix I, which can be considered as an operator, is unchanged by a
unitary transformation. Begin with the fact that for any matrix M, MI = IM =M.

Solution:

UIU † = UU−1I = I.
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5. Consider the rotation matrix for rotating Pauli spinors by an angle 90◦ about the z axis.
Using Eq. (??),

U = e−iσzπ/4 =
1√
2

(1− iσz).

(a) Using the commutator and anti-commutator relations for the σ matrices, show that the
transformation of σx is

UσxU
† = σy.

Solution:

UσxU
† =

1

2
[(1− iσz)σx(1 + iσz)]

=
1

2
[σx − iσzσx + iσxσz + σzσxσz]

=
1

2
[σx + σy + σy + iσyσz]

=
1

2
[σx + 2σy − σx] = σy.

(b) Show that rotating the state, |+, x〉, which refers to an eigenstate of σx with eigenvalue
of +1, gives

U |+, x〉 = |+, y〉,

which is the eigenstate of σy with eigenvalue +1.

Solution:

σyU |+, x〉 =
1√
2
σy(1− iσz)|+, x〉

=
1√
2

(σy + σx)|+, x〉

=
1√
2

(1 + σy)|+, x〉

=
1√
2

(1 + σyσx)|+, x〉

=
1√
2

(1− iσz)|+, x〉

= U |+, x〉.
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6. Consider some Hermitian N × N matrix Kij, with eigenvalues λ(n) and the corresponding
normalized eigenvectors v(n),

Kv(n) = λ(n)v(n).

The N eigenvectors each have N components, v
(n)
i . Create an N ×N matrix

Uij = v
∗(i)
j .

Thus, one is making a matrix by having each row be one of the eigenvectors.

(a) Show that U is unitary.

Solution:

U †ji = v
(i)
j

UijU
†
jk = v

(i)∗
j v

(k)
j = δik.

(b) Show that the jth component of the vector Uv(n) is

(Uv(n))j = δnj,

Thus, the vectors Uv(n) are

(Uv(1)) =


1
0
0
...
0

 , (Uv(2)) =


0
1
0
...
0

 , · · ·

Now, consider the matrix
K ′ = (UKU †),

and have it act on the vectors above. Show that

K ′(Uv(n)) = λn(Uv(n)).

This shows that the vectors (Uv(n)) are eigenvectors of the matrix K ′ with eigenvalues λn.
Given that the eigenvectors are of the simple form above, the matrix (UKU †) must be
diagonal. Thus, the matrix U defined above provides the unitary matrix for transforming
the matrix K into its diagonal form.

Solution:

(Uv(n))j = Ujivi = v
∗(j)
i v

(n)
i = δjn.

K ′ = UKU †

K ′Uv(n) = UU †K ′Uv(n) = UKv(n) = λ(n)Uv(n).
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7. Consider the matrix:

M =

 1 0 0
0 0 1
0 1 0


(a) What are the eigenvalues of M?

Solution:

M =

 1 0 0
0
0

(σx)

 .

You can rotate σx into σz, so

M′ =

 1 0 0
0 1 0
0 0 −1

 .

The eigenvalues are 1, 1,−1.

(b) Find eigenvectors of M?

Solution:
Because the eigen vectors of σx are

1√
2

(
1
1

)
and

1√
2

(
1
−1

)
,

by inspection, the eigenvectors are 1
0
0

 and
1√
2

 0
1
1

 , and
1√
2

 0
1
−1

 .
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8. Consider the 2×2 matrix

K =

(
A C∗

C B

)
(a) What are the eigenvalues of K?

Solution:
By inspection, one can rewrite K as

K =
A+B

2
I +

A+B

2
σz + CRσx + CIσy.

Because the sigma matrices rotate like vectors, diagonalizing them should lead to something
times σz, with the something being the magnitude of the vector representing the coefficients,

λ± =
A+B

2
+

√(
A+B

2

)2

+ C2
R + C2

I .

(b) What are the eigenvectors of K?

Solution:

(
A C∗

C B

)(
1
u±

)
=

(
A+ C∗u±
C +Bu±

)
=

(
λ±
λ±u±

)
.

A+ C∗u± = λ±,

u± =
λ± − A
C∗

.

The normalized eigenvectors are:(
1

λ±−A
C∗

)
1√

1 + (λ± − A)2/|C|2
.
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9. A beam of light with wavelength 660 nm is sent along the z axis through a polaroid filter
that passes only x polarized light. The beam is initially polarized at 30◦ to the x axis, and
the total energy of the pulse is exactly 10 Joules. Estimate the fluctuations of the energy of
the transmitted beam, 〈(E − Ē)2〉1/2. Express the fluctuations as a fraction of the average
transmitted energy. (Hint: Consider the binomial distribution, with N tries with probability
p of success of each try.)

Solution:

u =

(
cos θ
sin θ

)
=

( √
3/2

1/2

)
,

|〈u|x〉|2 = px(probability of passing through)

N =
Etot

~c/λ
= number of tries,

P (n) =
pnx(1− px)N−nN !

n!(N − n)!
,

〈n〉 =
∑
n

P (n)n =
∑
n

pn−1
x (1− px)N−1−(n−1)

(N − 1− (n− 1))(n− 1)!
(N − 1)!pxN

= pxN

〈n(n− 1)〉 = p2
xN(N − 1),

Fluctuation = 〈(n− 〈n〉)2〉
= 〈n2 > −〈n〉2 = 〈n(n− 1)〉+ 〈n〉 − 〈n〉2

= p2
x(N(N − 1)) + pxN − p2

xN
2

= px(1− px)N.

〈(E − Ē)2〉1/2 =
~c
λ

[px(1− px)N ]1/2

=

√
Etot

~c
λ

√
px(1− px).
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10. Consider light moving along the z axis and using the following definitions for |R〉 and |L〉 in
terms of x and y polarized light,

|R〉 ≡ 1√
2

(|x〉+ i|y〉), |L〉 ≡ 1√
2

(|x〉 − i|y〉),

(a) In terms of |R〉(RCP) and |L〉(LCP) write the states |45〉 and |135〉 which are linearly
polarized at 45◦ and 135◦ relative to the x axis.

(b) Calculate the 2× 2 transformation matrix from the 45, 135 basis, where

|45〉 =

(
1
0

)
, |135〉 =

(
0
1

)
,

to the R,L basis.

(c) Show that this transformation is unitary.

Solution:
a)

|45〉 =
1√
2

(|x〉+ |y〉)

=
(1− i)

2
|R〉+

(1 + i)

2
|l〉,

|135〉 = −(1 + i)

2
|R〉 − (1− i)

2
|L〉,

b)

U =

(
〈45|R〉 〈135|R〉
〈45|L〉 〈135|L〉

)
=

1

2

(
(1 + i) (−1 + i)
1− i −1− i

)
c)

UU † =
1

4

(
(1 + i) (−1 + i)
1− i −1− i

)(
(1− i) (1 + i)
−1− i −1i

)
=

1

4

(
(2 + 2) (2− 2)
(2− 2) (2 + 2)

)
= I.
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11. The probability that a photon in state |Ψ〉 passes through an x-polaroid is the average value
of a physical observable which might be called the x-polarizedness..

(a) Write down the operator Px, as a matrix in the XY basis where

|X〉 =

(
1
0

)
, |Y 〉 =

(
0
1

)
.

The projection 〈Ψ|Px|Ψ〉 is the probability that |Ψ〉 makes it through the filter.

(b) What are its eigenvalues and eigenstates?

(c) Write the matrix Px in the RL basis, where RCP and LCP states are

|R〉 =

(
1
0

)
, |L〉 =

(
0
1

)
,

and show that the eigenvalues are the same as in the XY basis. Also, show that the this
matrix is a projection operator by explicitly multiplying Px by itself.

Solution:
a)

Px = |x〉〈x| =
(

1 0
0 0

)
b) Eigenvalues are

λ = 1, 0

Eigenvectors are (
1
0

)(
0
1

)
.

c)

|x〉 =
1√
2

(|R〉+ |L〉)

|x〉〈x| = 1

2
|R〉〈R|+ 1

2
|R〉〈L|+ 1

2
|L〉〈R|+ 1

2
|L〉〈L|

In RL basis

|R〉 =

(
1
0

)
,

|L〉 =

(
0
1

)
.
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So,

|x〉〈x| =
(

1
2

1
2

1
2

1
2

)
=

1

2
(1 + σx).

If you rotate this the σx can turn into σz which diagonalizes it, so the eigenvalues are 1, 0 X.
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12. The trace of a matrix A is defined as:

TrA ≡
∑
i

Aii

(a) Show that the trace of A is invariant under a transformation of basis,

A→ U †AU

(b) Show that TrAB = TrBA.

Solution:
a)

TrU †AU = U †ijAjkUki

= UkiU
†
ijAjk = Akk = TrA. X

b)

TrAB = AijBji = BjiAij = TrBA. X
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13. A plane polarized photon at θ = 45◦ enters a special crystal with indices of refraction:
nx=1.50 for photons polarized along the x axis
ny=1.52 for photons polarized along the y axis.
Assuming the wavelength of the light is 660 nm before it enters the crystal, choose the
thickness of the crystal such that the outgoing light is right circularly polarized. Assume the
dispersion is linear, k = nω/c.

Solution:

u =
e−iωτ√

2

(
eikxt

eikyt

)
=
eikxt−iωτ√

2

(
1

ei∆nωt/c

)
For RCP ei∆nωt/c = i,

π

2
= ∆nωt/c

t =
πc

2ω∆n
.
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14. Consider the matrix for rotation about the z axis,

R(φ) = e−iσzφ/2. (0.2)

Show that after rotation about the z axis,

R(φ)σxR
−1(φ) = σx cos(φ) + σy sin(φ) (0.3)

Solution:

RσxR−1 = [cos(φ/2)− iσz sin(φ/2)]σx [cos(φ/2) + iσz sin(φ/2)]

= σx cos2(φ/2) + σzσxσz sin2(φ/2)− [σz, σx] sin(φ/2) cos(φ/2).

σzσxσz = −σx, [σz, σx] = 2iσy,

RσxR−1 = σx cosφ+ σy sin(φ).
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15. Consider a basis for spin-up and spin-down electrons (along the z axis),

| ↑〉 =

(
1
0

)
, | ↓〉 =

(
0
1

)
(a) Write down the 4 vectors describing an electron with spin pointed along the positive/neg-

ative directions of x and y axes.

(b) Write the six density matrices describing electrons polarized along the positive/negative
directions of each of the three axes.

(c) Write the density matrix describing an incoherent mixture of 60% spin-up and 40% spin
down.

(d) Using the density matrix, calculate < y,+|Sz|y,+〉.

Solution:
a)

|x ↑〉 =
1√
2

(
1
1

)
,

|x ↓〉 =
1√
2

(
1
−1

)
,

|y ↑〉 =
1√
2

(
1
i

)
,

|x ↑〉 =
1√
2

(
1
−i

)
,

b)

ρz↑ =

(
1 0
0 0

)
,

ρz↓ =

(
0 0
0 1

)
,

ρx↑ =
1

2

(
1 1
1 1

)
,

ρx↓ =
1

2

(
1 −1
−1 1

)
,

ρy↑ =
1

2

(
1 −i
0 0

)
,

ρy↑ =
1

2

(
1 i
0 −i

)
.

c)

P60/40 =

(
0.6 0
0 0.4

)
.
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d)

〈y ↑ |Sz|y ↓〉 =
1

2
Trρy↑σz

=
1

2
Tr

(
1 −i
i 1

)(
1 0
0 −1

)
= 0.
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16. Neutral Kaon Oscillations: There are two kinds of neutral kaons one can make using down
and strange quarks,

|K0〉 = |ds̄〉, |K̄0〉 = |sd̄〉.

If it weren’t for the weak interaction, the two species would have equal masses, and the
Hamiltonian (for a kaon with zero momentum) would be

H0 =

(
M 0
0 M

)
.

However, there is an additional term from the weak interaction that mixes the states,

Hm =

(
0 ε
ε 0

)
.

The masses of a neutral kaon are 497.6 MeV, without mixing, but after adding the mixing
term the masses differ by 3.56µeV. The two eigenstates are known as KS (K-short) and KL

(K-long), because they decay with quite different lifetimes.

(a) What is ε?

(b) If one creates a kaon in the K0 state at time t = 0, find the probability it would be
measured as a K̄0 as a function of time.

(c) A beam kaons is created in the K0 channel and has a kinetic energy of 600 MeV per
kaon. Plot the probability that the kaon is in the K0 state as a function of the distance
traveled, x. Ignore the fact that the kaons decay.

(d) Repeat (c), but take into account the decays. The states

|KS〉 =
1√
2

(|K0〉+ |K̄0〉,

|KL〉 =
1√
2

(|K0〉 − |K̄0〉,

known at K-short and K-long, represent the eigenstates of the Hamiltonian. The lifetime
of a KL is 51.2 ns, and the lifetime of the KS is 0.0896 ns. Note that the wave function
should be modified by the factor e−t/(2τ) to take decays into account decays of lifetime
τ . It is often convenient to remember that ~c=197.327 MeV fm = 197.327 eV nm.

FYI: If the above were exactly true, the KS state would be even under CP while the KL

would be odd under CP . Here, CP is an operator that changes particles to anti-particles.
If the particle-antiparticle symmetry were exact, the CP operator would commute with the
Hamiltonian and the eigenstates of the Hamiltonian, KS and KL, would have to be eigenstates
of CP . The KS would then decay to two pions and the KL could decay to three pions.
However, there is an additional small CP violating term in the Hamiltonian which allows
KL to have a small probability of decaying to two pions. This was the first experimental
laboratory observation of CP violation. CP violation is required to explain the preponderance
of matter vs. anti-matter in the universe.
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Solution:
a)

H = MI + εσx,

E± = M ± ε, ε = 1.78 µeV.

b)

|K0〉 =

(
1
0

)
, |K̄0〉 =

(
0
1

)
,

|ψ(t)〉 = e−iHt/~|ψ(0)〉 = e−iMt/~e−iεσxt/~
(

1
0

)
= e−iMt/~ [cos(εt/~)− i sin(εt/~)]

(
1
0

)
= e−iMt/~

(
cos(εt/~)
−i sin(εt/~)

)
,

PK0 = cos2(εt/~).

c) The time in rest frame is

τ = z/(γv),

γ = E/m = (600 + 497.6)/497.6 = 2.206, γv =
√
γ2 − 1 = 1.966,

PK0 = cos2

(
εz

~γv

)
= cos2

( εz

1.966~c

)
,

~c = 197.326eV nm,

PK0 = cos2(0.004588z), z is in nm

= cos2(4.588z), z is in µm

d) Begin with the fact that

|ψ(t = 0)〉 =
1√
2

(|KS〉+ |KL〉).

Note that KS and KL are the energy eigenstates with eigenvalues M ± ε/2. The wave functions
evolve as

|ψ(t)〉 =
1√
2
eiMt/~ (eiεt/2~−t/2τS |KS〉+ e+iεt/2~−t/2τL|KL〉

)
.

Rewriting the terms with |KS〉 and |KL〉 in terms of |K0〉 and |K̄0〉,

|ψ(t)〉 =
1

2
eiMt/~ (eiεt/2~−t/2τS + e−iεt/2~−t/2τS

)
|K0〉+ · · · |K̄0〉.

There is no need to write out the |K̄0〉 term. The probability is then

PK0(t) =
1

4
e−t/τS +

1

4
e−t/τL +

1

2
e−t/2τS−t/2τL cos(εt/~).
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As a check, one can set the lifetimes to infinity and recover the previous expressions. To obtain
the answer in terms of z, perform the same substitution as in (c), εt/~ = 4.588z, with z in
µm. Unless the resolution for measuring decays is of µm precision, the oscillating term can be
neglected. The decays then proceed as one would expect – half the decays with the longer lifetime
and half with the longer lifetime. If one goes more than a meter downstream, the beam becomes
pretty much perfectly KL.
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17. Neutrino Oscillations: There are three kinds of neutrinos corresponding to the three lepton
families, and recent evidence has suggested that they may oscillate between generations. Here
we consider two flavors, the µ neutrino and the τ neutrino. Suppose that the Hamiltonian can
be written as a free term plus a term that mixes the µ and τ neutrinos, which is proportional
to α.

H =

( √
k2 +m2

µ 0

0
√
k2 +m2

τ

)
+ α

(
0 1
1 0

)
(a) Supposing you are in the rest frame of the neutrino and that the momentum k is zero,

show that the evolution operator e−iHt/~ can be written as

e−i(mµ+mτ )t/2~ {cosωt− iσn sinωt} ,

where

~ω ≡
√
α2 + (

mτ −mµ

2
)2

σn ≡
mµ−mτ

2
σz + ασx

~ω
(b) If a neutrino starts as a µ neutrino, what is the probability, as a function of time, of

being a τ neutrino?

(c) As a function of the masses and α, what is the oscillation time? I.e. the time to return
to its original flavor.

(d) If the neutrinos are extremely relativistic, k >> m, describe how the oscillation time
translates into an oscillation as a function of the distance from the creation.

Note: Here the “masses” are the rest energies (mc2).

Solution:
a) with k = 0,

H =

(
mµ +mτ )

2

)
+

(
mµ −mτ

2

)
σz + ασx

=

(
mµ +mτ

2

)
+ ~ωσn,

where

~ω =
√

(mµ −mτ )2/4 + α2,

σn =

[(
mµ −mτ

2

)
σz + ασx

]
/(~ω)

U = e−iHt/~

= e−i(mµ+mτ )t/~ {cosωt− iσn sinωt} .
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b)

Pµ→τ = |〈τ |U |µ〉|2 =
α2

~2ω2
sin2 ωt.

c)

τ0 =
π

ω
.

d)

τ = γτ0, γ ≈ ~kc
m

.
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18. Show that
TrASBSCS = TrAH(t)BH(t)CH(t),

where the subscripts refer to Schrödinger and Heisenberg representations.

Solution:

TrASBSCS = TrASe
iHt/~e−iHt/~BSe

iHt/~e−iHt/~CSe
iHt/~e−iHt/~

= Tre−iHt/~ASe
iHt/~e−iHt/~BSe

iHt/~e−iHt/~CSe
iHt/~

= TrAHBHCH .
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