SUBJECT EXAM SAMPLE QUESTIONS PHYSICS 851/852

- 1. (a) Define a projection operator P_i that projects a state i in terms of bras and kets.
 - (b) Derive the relation $P^2 = P$.
 - (c) Consider the 3-state basis,

$$|\psi_1\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix} , |\psi_2\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix} , |\psi_3\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Find the projection operator that projects the state, $|+\rangle = (|\psi_1\rangle + |\psi_2\rangle)/\sqrt{2}$.

- (d) Show that $P_+^2 = P_+$.
- 2. Consider the $\ell = 1$ basis where $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, represent the m = 1,0,-1 projections respectively of L_z . Write down the matrix components of the operator that represents a rotation by an angle ϕ about the z axis.
- 3. Take for granted the expansion for a plane wave,

$$e^{i\mathbf{k}\cdot\mathbf{r}} = \frac{1}{2} \sum_{\ell=0}^{\infty} i^{\ell} (2\ell+1) P_{\ell}(\cos\theta) \left\{ h_{\ell}(kr) + h_{\ell}^{*}(kr) \right\} ,$$

where

$$h_{\ell}(x)|_{x\to\infty} = \frac{-i}{x}e^{ix-\ell\pi/2}$$
,

and the definition of the scattering amplitude f,

$$\frac{d\sigma}{d\Omega} = |f(\Omega)|^2, \psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} + f(\Omega)\frac{e^{ikr}}{r}.$$

Derive the relation, for a spherically symmetric potential,

$$\sigma = \frac{4\pi}{k^2} \sum_{\ell} (2\ell + 1) \sin^2 \delta_{\ell}$$

4. Consider a particle of mass m that feels the spherically symmetric potential,

$$V(r) = \beta \delta(r - a) , \beta > 0$$

(a) Find the phase shift as a function of energy.

- (b) What is the scattering length?
- (c) If $\beta < 0$, find the minimum value of a that permits a bound state?
- 5. (a) Starting from the expression for the evolution operator,

$$U(t, t_0) = 1 - \frac{i}{\hbar} \int_{t_0}^t dt' V(t') U(t', t_0) ,$$

Derive Fermi's golden rule for the transition rate from state i to state f where the interaction is independent of time.

$$\Gamma_{f \to i} = \frac{2\pi}{\hbar} |\langle f|V|i\rangle|^2 \delta(\epsilon_f - \epsilon_i).$$

(b) If the interaction has an explicit time dependence, $V_t = V \cos \omega t$, the relevant expression becomes:

$$\Gamma_{f \to i} = \frac{2\pi}{4\hbar} |\langle f|V|i\rangle|^2 \left\{ \delta(\epsilon_f - \epsilon_i - \hbar\omega) + \delta(\epsilon_f - \epsilon_i + \hbar\omega) \right\}$$

Consider a particle of mass m in the ground state of a hydrogen atom with a ground state wave function,

$$\psi_0(\mathbf{r}) = \frac{2}{\sqrt{4\pi a_0^3}} e^{-r/a_0},$$

where the binding energy is $e^2/(2a_0)$.

A perturbative force is added,

$$V_t = F\cos(\omega t).$$

Find the rate at which the atom is ionized. Your answer may contain a_0 .

6. Particles of type a and b with identical masses m are mixed by the interaction,

$$V_{ab} = g \int d^3r \Psi_a^{\dagger}(\mathbf{r}) \Psi_b(\mathbf{r}) + \text{h.c.}$$

Particle a feels an interaction with a harmonic oscillator potential,

$$V = \frac{1}{2}m\omega^2 r^2 \; ,$$

while particle b is immune to it's effects.

- (a) If particle a is in the ground state of the potential, estimate the rate at which a decays into b. Use Fermi's golden rule.
- (b) A particle of type b scatters off the well with an energy close to $3\hbar\omega/2$. Find an expression for the cross section which is valid for energies near $3\hbar\omega/2$. Assume $g \ll \hbar\omega$.
- 7. (a) Derive the expression for $\Delta E^{(2)}$ in second-order stationary-state perturbation theory.

- (b) Assuming a particle of mass m is in a one-dimensional harmonic oscillator characterized by frequency ω , find the correction to the ground-state energy due to the interaction, V = Fx, in second order perturbation theory.
- (c) Find the exact expression and compare to the result above.
- 8. For the Hamiltonian,

$$H = \sum_{k} \epsilon_k a_k^{\dagger} a_k$$

Show that in the Heisenberg representation,

- (a) $a_k(t) = e^{-i\epsilon_k t} a_k$.
- (b) $a_k^{\dagger}(t) = e^{i\epsilon_k t} a_k^{\dagger}$.
- (c) $e^{-iHt}a_ib_i^{\dagger}c_k^{\dagger}e^{iHt} = e^{i(\epsilon_j + \epsilon_k \epsilon_i)t}a_ib_i^{\dagger}c_k^{\dagger}$.
- 9. A particle of mass m is initially in the ground state of a one-dimensional infinite square well of width L, 0 < x < L. At t = 0 the size is suddenly doubled such that 0 < x < 2L.
 - (a) What is the probability of being in the ground state of the new well?
 - (b) What is the expectation of the energy, $\langle \Psi | H | \Psi \rangle$, before and after the expansion of the well?
 - (c) Repeat a, but assuming that the well has expanded gradually.
 - (d) Repead b, but again with the assumption of slow expansion.
- 10. A particle of charge e and mass m is in a magnetic field $\vec{B} = B\hat{z}$ and an electric field, $\vec{E} = E\hat{y}$.
 - (a) Using a gauge where both the electric and magnetic fields derive from a vector potential pointed along the y axis, write the Hamiltonian in Harmonic oscillator form.
 - (b) If the electric field is zero, what are the eigen-energies?
 - (c) In a two-dimensional system $(p_z = 0)$, how many electrons may occupy the lowest energy level if the dimensions are L_x and L_y ? (Again, assume there is no electric field.)
- 11. (a) Starting with the expressions,

$$\langle \ell, m | \vec{L}^2 | \ell, m \rangle = \ell(\ell+1)\hbar^2$$

 $\langle \ell, m | L_z | \ell, m \rangle = m\hbar$,

derive the expression

$$L_{+}|\ell,m\rangle \equiv (L_{x}+iL_{y})|\ell,m\rangle = \sqrt{(\ell-m)(\ell+m+1)}|\ell,m+1\rangle$$

- (b) In terms of ℓ , m_1 and m_2 , find an expression for $\langle \ell, m_1 | L_x | \ell, m_2 \rangle$.
- 12. (a) Define a density matrix ρ_{Ψ} for the state Ψ in terms of $|\Psi\rangle$ and $\langle\Psi|$.

- (b) Show that $\langle \Psi | K | \Psi \rangle = \text{Tr } \rho_{\Psi} K$.
- (c) Write ρ_{+} and ρ_{-} in matrix form for the 3-component states,

$$|+\rangle = \begin{pmatrix} 1/\sqrt{2} \\ i/\sqrt{2} \\ 0 \end{pmatrix} , \quad |-\rangle = \begin{pmatrix} 1/\sqrt{2} \\ -i/\sqrt{2} \\ 0 \end{pmatrix}.$$

- (d) Write a density matrix to represent an incoherent superposition of $50\% \mid + \rangle$ and $50\% \mid \rangle$.
- 13. An electron is in a spin \uparrow (along z-axis) at t = 0. A magnetic field is applied along the x-axis. Choose the basis,

$$|\uparrow\rangle = \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \; , \quad |\downarrow\rangle = \left(\begin{array}{c} 0 \\ 1 \end{array} \right) .$$

- (a) Find the evolution of the spinor, $\chi(t)$.
- (b) Repeat for the case where $\vec{B} = (B/\sqrt{2})(\hat{x} + \hat{z})$.
- 14. A proton and neutron with magnetic moments μ_p and μ_n sit in s-wave states of a nuclear well. They exhibit a spin-spin attraction,

$$V_{s,o} = \alpha \mathbf{S}_1 \cdot \mathbf{S}_2$$

They are also placed in a constant magnetic field, B. Find the splitting of the four degenerate states due to spin-orbit and magnetic interactions.

15. The matrix element for radiative capture for a photon of momentum \mathbf{k} is of the form,

$$\mathcal{M} = \beta \vec{\epsilon} \cdot \int d^3 r \phi_f^*(\mathbf{r}) \frac{i\hbar \vec{\nabla}}{m} \phi_i(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}}.$$

- (a) Derive the corresponding expression for \mathcal{M} in the dipole approximation.
- (b) If ϕ_i refers to the 1s state of Hydrogen, while ϕ_f refers to the 2s state, which of the following matrix elements are zero?
 - i. $\langle f | \vec{\epsilon} \cdot \vec{r} | i \rangle$ (electric dipole)
 - ii. $(\vec{k} \times \vec{\epsilon}) \epsilon \langle f | \vec{r} \cdot \vec{p} | i \rangle$ (magnetic dipole)
 - iii. $\langle f | \vec{\epsilon} \cdot \vec{r} \vec{k} \cdot \vec{r} | i \rangle$ (electric quadrupole)
- (c) Again considering the transition from the 2s to the 1s state, if one expands $e^{i\mathbf{k}\cdot\mathbf{r}}$ to all powers in k, what is the lowest non-zero power of k that survives the integration?

FYI:

$$\psi_{1,0}(\mathbf{r}) = \frac{2}{\sqrt{4\pi a_0^3}} e^{-r/a_0}$$

$$\psi_{2,0}(\mathbf{r}) = \frac{1}{\sqrt{4\pi (2a_0)^3}} \left(2 - \frac{r}{a_0}\right) e^{-r/(2a_0)}$$

- 16. Consider a two component one-dimensional gas of fermions. The two species, A and B both carry spin 1/2, and have identical masses m. They are placed in an environment where the A particles feel a additional attractive potential U. Decays occur, via the emission or absorpton of photons, which change A into B and vice versa. The net density is fixed, $n = n_A + n_B$. In terms of n, m and U, find the fraction of particles of type A.
- 17. A ρ_0 meson $(I=1,I_3=0)$ decays into two pions. Pions have I=1, with the three species being π^+ , π^- and π^0 . What fraction of the pion pairs are π^+ , π^- vs. π^0 , π^0 ?
- 18. Find the possible L-S-J states for 2 electrons in the 2-p shell of Carbon. Which state is the ground state?
- 19. The matrix element for the electromagnetic decay of an atomic d state with m = 0 to an p state with m = 0 is given by the matrix element,

$$\mathcal{M} \equiv \alpha \vec{\epsilon} \cdot \langle \ell = 2, m = 0 | \vec{r} | \ell = 1, m = 0 \rangle$$

where $\alpha \vec{\epsilon} \cdot \vec{R}$ is the interaction responsible for the decay, and $\vec{\epsilon}$ is the polarization vector of the outgoing photon. Assume that one has used this matrix element to calculate the decay rate for this reaction and the resulting rate is noted as Γ_{00} .

- (a) Which components of $\vec{\epsilon}$ contribute to Γ_{00} .
- (b) In terms of Γ_{00} , find the decay rates $\Gamma_{m1,m2}$ for all five d states with projection m_1 into any of the three p states with projection m_2 . Assume all polarizations are included in the rate. DO NOT EVALUATE CLEBSCH-GORDAN COEFFICIENTS.
- 20. An electron is in a $\ell=1, j=3/2, M_J=1/2$ state. Express this state as a linear combination of states in the m_ℓ , m_s basis. Show how to calculate the Clebsch-Gordan coefficients using the relations for L_+ and L_- .
- 21. Consider Fermi creation operators a^{\dagger} and b^{\dagger} . Consider the Hamiltonian,

$$H = \epsilon_0 (a^{\dagger} a + b^{\dagger} b) + \gamma (a^{\dagger} b^{\dagger} + b a).$$

(a) Find operators α^{\dagger} and β^{\dagger} such that the Hamiltonian can be rewritten,

$$H = E_0 + E(\alpha^{\dagger} \alpha + \beta^{\dagger} \beta).$$

- (b) Find the constants E_0 and E in terms of ϵ_0 and γ .
- (c) If a vacuum is defined in terms of α and β ,

$$\alpha|0\rangle = 0, \quad \beta|0\rangle = 0,$$

find the expectation $\langle 0|a^{\dagger}a+b^{\dagger}b|0\rangle$.

22. Using $e^{-x^2/(2a^2)}$ as the variational wave function with a as the variational parameter, estimate the ground state energy of a particle of mass m moving in the potential

$$V(x) = \beta |x|. \tag{1}$$

23. Consider a particle of mass m moving under the influence of a harmonic oscillator potential in two dimensions,

$$V(x,y) = \frac{1}{2}m\omega^{2}(x^{2} + y^{2}).$$

The eigen-energies are

$$E_n = (n+1)\hbar\omega, \quad n = 0, 1, 2, \cdots$$

- (a) What is the degeneracy of the level n?
- (b) If the states are eigenstates of L_z ,

$$\Psi_{n,m}(x,y) \sim \psi_{n,m}(\sqrt{x^2 + y^2})e^{im\phi},$$

what are the allowed values of m for a level n? Justify your answer.

(c) Now consider a modified potential,

$$V(x,y) = \frac{1}{2}m\omega^{2}(x^{2} + y^{2} + 2\beta xy).$$

Write the Hamiltonian (including the kinetic-energy part) in terms of variables

$$R \equiv (x+y)/\sqrt{2}, \quad r \equiv (x-y)/\sqrt{2}.$$

(d) What are the eigen-energies of the new Hamiltonian?