your name(s) \qquad

Physics 852 Exercise \#8 - Friday, March. 18th
BCS theory is built on a simplified assumption of an interaction with a fixed density of states over a finite energy range, with an interaction that mixes all states (with a given total momentum) equally. To mimic this, consider the following Hamiltonian in matrix form,

$$
\begin{align*}
H_{i i} & =E_{0}(i / M), \quad E_{0}=1.0 \tag{0.1}\\
H_{i \neq j} & =-g / M, \quad g=0.1 ;
\end{align*}
$$

where M is the dimensionality of the matrix with $0 \leq i<M$.

1. Write a program that finds the eigenvalues of the matrix and prints out the lowest 10 eigenvalues.
2. Run the program for $M=5,20,80,320$ and compare results.
3. For $M=\mathbf{3 2 0}$, compare the lowest eigenvalues for $\boldsymbol{g}=\mathbf{0 . 1}, \mathbf{0 . 0 1}, \mathbf{0 . 0 0 1}$.
4. What happens under the interchange $\boldsymbol{g} \rightarrow-\boldsymbol{g}$?
