your name(s) \qquad

Physics 852 Exercise \#4c - Friday, Feb. 11th
The radial hydrogen-atom wave functions are

$$
\psi_{n, \ell}(r, \theta, \phi)=\left\{\left(\frac{2}{n a_{0}}\right)^{3} \frac{(n-\ell-1)!}{2 n[(n+\ell)!]^{3}}\right\}^{1 / 2} e^{-r /\left(n a_{0}\right)}\left(\frac{2 r}{n a_{0}}\right)^{\ell} L_{n+\ell}^{2 \ell+1}\left(\frac{2 r}{n a_{0}}\right) Y_{\ell, m}(\theta, \phi)
$$

Here, $L_{n}^{k}(x)$ are Laguerre polynomials. The states of the hydrogen atom are denoted $|\boldsymbol{n}, \ell, J, M\rangle$, where ℓ is the orbital quantum number and \vec{J}, is the total angular momentum, $\vec{J}=\vec{L}+\vec{S}$, and M labels the projection of $\overrightarrow{\boldsymbol{J}}$. Note that because $s=\mathbf{1} / \mathbf{2}, J$ must be half-integer.
Consider the operator

$$
A \equiv \vec{S} \cdot \vec{P}
$$

where R_{0} is some arbitrary constant. The operators X, Y, Z are the position operators and $R^{2}=X^{2}+$ $Y^{2}+Z^{2}$.

1. For a given J, what values of ℓ are possible?
2. Write the operator \boldsymbol{A} in terms of a sum over irreducible tensor operators, $\boldsymbol{T}_{\boldsymbol{q}}^{\boldsymbol{k}}$, where you define the operators. (You can find this in the lecture notes or peak at the FYI below).
3. You need to calculate the matrix elements

$$
\left\langle n^{\prime}, \ell^{\prime}, J^{\prime}, M^{\prime}\right| A|n, \ell, J, M\rangle .
$$

For a given ket state, $|n, \ell, J, M\rangle$, which values of $n^{\prime}, \ell^{\prime}, J^{\prime}, M^{\prime}$ might result in a non-zero matrix element? Use the Wigner-Eckart theorem along with parity arguments.
4. (EXTRA CREDIT) Repeat, but with the operator \boldsymbol{A} being replaced by

$$
B \equiv S_{z} P_{z}
$$

FYI: Some spherical harmonics are:

$$
\begin{aligned}
Y_{0,0} & =\frac{1}{\sqrt{4 \pi}}, \\
Y_{1,0} & =\sqrt{\frac{3}{4 \pi}} \cos \theta, \\
Y_{1, \pm 1} & =\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi}, \\
Y_{2,0} & =\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right), \\
Y_{2, \pm 1} & =\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm i \phi}, \\
Y_{2, \pm 2} & =\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \phi}, \\
Y_{\ell-m}(\theta, \phi) & =(-1)^{m} Y_{\ell m}^{*}(\theta, \phi) .
\end{aligned}
$$

An example of some sets of irreducible tensor operators:

$$
\begin{aligned}
T_{0}^{0} & =1 \\
T_{1}^{1} & =-\frac{1}{\sqrt{2}}(x+i y) \\
T_{0}^{1} & =z \\
T_{-1}^{1} & =\frac{1}{\sqrt{2}}(x-i y) \\
T_{2}^{2} & =\sqrt{\frac{3}{8}}\left(x^{2}+2 i x y-y^{2}\right) \\
T_{1}^{2} & =-\frac{\sqrt{3}}{2} z(x+i y) \\
T_{0}^{2} & =\frac{1}{2}\left(3 z^{2}-r^{2}\right) \\
T_{-1}^{2} & =\frac{\sqrt{3}}{2} z(x-i y) \\
T_{-2}^{2} & =\sqrt{\frac{3}{8}}\left(x^{2}-2 i x y-y^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
1 & =T_{0}^{0} \\
x & =\frac{1}{\sqrt{2}}\left(T_{-1}^{1}-T_{1}^{1}\right) \\
y & =\frac{i}{\sqrt{2}}\left(T_{-1}^{1}+T_{1}^{1}\right) \\
z & =T_{0}^{1} \\
x^{2} & =\frac{1}{2} \sqrt{\frac{2}{3}}\left(T_{2}^{2}+T_{-2}^{2}\right)-\frac{1}{3} T_{0}^{2}+\frac{1}{3} T_{0}^{0} r^{2} \\
y^{2} & =-\frac{1}{2} \sqrt{\frac{2}{3}}\left(T_{2}^{2}+T_{-2}^{2}\right)-\frac{1}{3} T_{0}^{2}+\frac{1}{3} T_{0}^{0} r^{2}, \\
z^{2} & =\frac{2}{3} T_{0}^{2}+\frac{1}{3} T_{0}^{0} r^{2} \\
x y & =i \frac{1}{\sqrt{6}}\left(T_{-2}^{2}-T_{2}^{2}\right) \\
x z & =\frac{1}{\sqrt{3}}\left(T_{-1}^{2}-T_{1}^{2}\right) \\
y z & =\frac{i}{\sqrt{3}}\left(T_{-1}^{2}+T_{1}^{2}\right)
\end{aligned}
$$

