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Physics 852 Exercise #4c - Friday, Feb. 11th

The radial hydrogen-atom wave functions are
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Here, Lkn(x) are Laguerre polynomials. The states of the hydrogen atom are denoted |n, `, J,M〉, where
` is the orbital quantum number and ~J , is the total angular momentum, ~J = ~L + ~S, and M labels the
projection of ~J . Note that because s = 1/2, J must be half-integer.

Consider the operator
A ≡ ~S · ~P ,

where R0 is some arbitrary constant. The operators X,Y, Z are the position operators and R2 = X2 +
Y 2 + Z2.

1. For a given J , what values of ` are possible?

2. Write the operator A in terms of a sum over irreducible tensor operators, T kq , where you define the
operators. (You can find this in the lecture notes or peak at the FYI below).

3. You need to calculate the matrix elements

〈n′, `′, J ′,M ′|A|n, `, J,M〉.

For a given ket state, |n, `, J,M〉, which values of n′, `′, J ′,M ′ might result in a non-zero matrix
element? Use the Wigner-Eckart theorem along with parity arguments.

4. (EXTRA CREDIT) Repeat, but with the operatorA being replaced by

B ≡ SzPz.



FYI: Some spherical harmonics are:
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An example of some sets of irreducible tensor operators:
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