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Physics 852 Exercise #4b - Friday, Feb. 4th

The radial hydrogen-atom wave functions are
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Here, Lkn(x) are Laguerre polynomials.

Consider the operator
A ≡ e−R2/R2

0X2,

where R0 is some arbitrary constant. The operators X,Y, Z are the position operators and R2 = X2 +
Y 2 + Z2.

1. Write the operator X2 in terms of a sum over irreducible tensor operators, T kq , where you define
the operators. (You can find this in the lecture notes or peak at the FYI below).

2. You need to calculate the matrix elements

〈n, `,m|A|0〉.

For which values ofn, `,mmight the matrix element be non-zero? Use the orthogonality properties
of spherical harmonics.

3. Repeat (2) but replaceAwith the operator

B ≡ e−R2/R2
0P 2

x ,

where Px, Py, Pz are the momentum operators. You may wish to use the expression for P 2
x in

spherical coordinates given in the FYI.

4. After completing 1-3, go home and think about how you would go about answering the same ques-
tions but with the ket being |n′, `′,m′〉. Don’t do it!



FYI: Some spherical harmonics are:
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Y`−m(θ, φ) = (−1)mY ∗`m(θ, φ).

Using the following definition of some irreducible tensor operators,
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one can express various powers of x, y and z.
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Some algebra,
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Solution:
1. Read them off the FYI.

2. Because x2ψ0(r) looks like something along the lines of

[a+ bY`=2,m=−2(θ, φ) + cY`=2,m=0(θ, φ) + dY`=2,m=2(θ, φ)]ψ0(r),

only states with ` = 0,m = 0 or ` = 2,m = −2, 0, 2 can have non-zero overlaps. Any n is possible.

3. By inspection of ∂2
xψ0(r), one can see that the

∂2
xψ ∼ α(r) + β(r)x2,

so the answer is exactly the same as for (2).

4. First, you would have to include all the terms for P 2
x , i.e. include the ones that have derivatives w.r.t.

θ or φ. Second, the angular integral would involve three powers of spherical harmonics. Yuk!


