your name(s) \qquad

Physics 852 Exercise \#4b - Friday, Feb. 4th
The radial hydrogen-atom wave functions are

$$
\psi_{n, \ell}(r, \theta, \phi)=\left\{\left(\frac{2}{n a_{0}}\right)^{3} \frac{(n-\ell-1)!}{2 n[(n+\ell)!]^{3}}\right\}^{1 / 2} e^{-r /\left(n a_{0}\right)}\left(\frac{2 r}{n a_{0}}\right)^{\ell} L_{n+\ell}^{2 \ell+1}\left(\frac{2 r}{n a_{0}}\right) Y_{\ell, m}(\theta, \phi)
$$

Here, $L_{n}^{k}(x)$ are Laguerre polynomials.
Consider the operator

$$
A \equiv e^{-R^{2} / R_{0}^{2}} X^{2}
$$

where R_{0} is some arbitrary constant. The operators $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$ are the position operators and $R^{2}=X^{2}+$ $Y^{2}+Z^{2}$.

1. Write the operator X^{2} in terms of a sum over irreducible tensor operators, T_{q}^{k}, where you define the operators. (You can find this in the lecture notes or peak at the FYI below).
2. You need to calculate the matrix elements

$$
\langle n, \ell, m| A|0\rangle .
$$

For which values of n, ℓ, m might the matrix element be non-zero? Use the orthogonality properties of spherical harmonics.
3. Repeat (2) but replace \boldsymbol{A} with the operator

$$
B \equiv e^{-R^{2} / R_{0}^{2}} P_{x}^{2}
$$

where $\boldsymbol{P}_{\boldsymbol{x}}, \boldsymbol{P}_{\boldsymbol{y}}, \boldsymbol{P}_{\boldsymbol{z}}$ are the momentum operators. You may wish to use the expression for $\boldsymbol{P}_{\boldsymbol{x}}^{\mathbf{2}}$ in spherical coordinates given in the FYI.
4. After completing 1-3, go home and think about how you would go about answering the same questions but with the ket being $\left|\boldsymbol{n}^{\prime}, \ell^{\prime}, m^{\prime}\right\rangle$. Don't do it!

FYI: Some spherical harmonics are:

$$
\begin{aligned}
Y_{0,0} & =\frac{1}{\sqrt{4 \pi}}, \\
Y_{1,0} & =\sqrt{\frac{3}{4 \pi}} \cos \theta, \\
Y_{1, \pm 1} & =\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi}, \\
Y_{2,0} & =\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right), \\
Y_{2, \pm 1} & =\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm i \phi}, \\
Y_{2, \pm 2} & =\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \phi}, \\
Y_{\ell-m}(\theta, \phi) & =(-1)^{m} Y_{\ell m}^{*}(\theta, \phi) .
\end{aligned}
$$

Using the following definition of some irreducible tensor operators,

$$
\begin{aligned}
T_{0}^{0} & =1 \\
T_{1}^{1} & =-\frac{1}{\sqrt{2}}(x+i y), \\
T_{0}^{1} & =z \\
T_{-1}^{1} & =\frac{1}{\sqrt{2}}(x-i y) \\
T_{2}^{2} & =\sqrt{\frac{3}{8}}\left(x^{2}+2 i x y-y^{2}\right), \\
T_{1}^{2} & =-\frac{\sqrt{3}}{2} z(x+i y) \\
T_{0}^{2} & =\frac{1}{2}\left(3 z^{2}-r^{2}\right) \\
T_{-1}^{2} & =\frac{\sqrt{3}}{2} z(x-i y) \\
T_{-2}^{2} & =\sqrt{\frac{3}{8}}\left(x^{2}-2 i x y-y^{2}\right)
\end{aligned}
$$

one can express various powers of $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z}.

$$
\begin{aligned}
1 & =T_{0}^{0} \\
x & =\frac{1}{\sqrt{2}}\left(T_{-1}^{1}-T_{1}^{1}\right), \\
y & =\frac{i}{\sqrt{2}}\left(T_{-1}^{1}+T_{1}^{1}\right), \\
z & =T_{0}^{1} \\
x^{2} & =\frac{1}{2} \sqrt{\frac{2}{3}}\left(T_{2}^{2}+T_{-2}^{2}\right)-\frac{1}{3} T_{0}^{2}+\frac{1}{3} T_{0}^{0} r^{2}, \\
y^{2} & =-\frac{1}{2} \sqrt{\frac{2}{3}}\left(T_{2}^{2}+T_{-2}^{2}\right)-\frac{1}{3} T_{0}^{2}+\frac{1}{3} T_{0}^{0} r^{2}, \\
z^{2} & =\frac{2}{3} T_{0}^{2}+\frac{1}{3} T_{0}^{0} r^{2} \\
x y & =i \frac{1}{\sqrt{6}}\left(T_{-2}^{2}-T_{2}^{2}\right) \\
x z & =\frac{1}{\sqrt{3}}\left(T_{-1}^{2}-T_{1}^{2}\right) \\
y z & =\frac{i}{\sqrt{3}}\left(T_{-1}^{2}+T_{1}^{2}\right)
\end{aligned}
$$

Some algebra,

$$
\begin{aligned}
\partial_{x} f(r, \theta, \phi) & =\frac{\partial r}{\partial x} \partial_{r} f+\frac{\partial \theta}{\partial x} \partial_{\theta} f+\frac{\partial \phi}{\partial x} \partial_{\phi} f \\
& =\frac{\sin \theta \cos \phi}{r} \partial_{r} f+\frac{\cos \theta \cos \phi}{r} \partial_{\theta} f-\frac{\sin \phi}{r \sin \theta} \partial_{\phi} f
\end{aligned}
$$

If $f(r, \theta, \phi)$ depends only on r,

$$
\begin{aligned}
\partial_{x}^{2} f(r) & =\left(\frac{\sin \theta \cos \phi}{r} \partial_{r}+\frac{\cos \theta \cos \phi}{r} \partial_{\theta}-\frac{\sin \phi}{r \sin \theta} \partial_{\phi}\right) \frac{\sin \theta \cos \phi}{r} \partial_{r} f \\
& =\frac{\sin ^{2} \theta \cos ^{2} \phi}{r^{2}} \partial_{r}^{2} f+\left(\cos ^{2} \theta \cos ^{2} \phi+\sin ^{2} \phi\right) \frac{1}{r} \partial_{r} f \\
& =\frac{\sin ^{2} \theta \cos ^{2} \phi}{r^{2}} \partial_{r}^{2} f+\left(1-\sin ^{2} \theta \cos ^{2} \phi\right) \frac{1}{r} \partial_{r} f
\end{aligned}
$$

Solution:

1. Read them off the FYI.
2. Because $x^{2} \psi_{0}(r)$ looks like something along the lines of

$$
\left[a+b Y_{\ell=2, m=-2}(\theta, \phi)+c Y_{\ell=2, m=0}(\theta, \phi)+d Y_{\ell=2, m=2}(\theta, \phi)\right] \psi_{0}(r)
$$

only states with $\ell=0, m=0$ or $\ell=2, m=-2,0,2$ can have non-zero overlaps. Any \boldsymbol{n} is possible.
3. By inspection of $\partial_{x}^{2} \psi_{0}(r)$, one can see that the

$$
\partial_{x}^{2} \psi \sim \alpha(r)+\beta(r) x^{2}
$$

so the answer is exactly the same as for (2).
4. First, you would have to include all the terms for $\boldsymbol{P}_{\boldsymbol{x}}^{2}$, i.e. include the ones that have derivatives w.r.t. $\boldsymbol{\theta}$ or $\boldsymbol{\phi}$. Second, the angular integral would involve three powers of spherical harmonics. Yuk!

