\qquad

Physics 852 Exercise \#3 - Friday, Feb. 5th

The $\boldsymbol{\omega}$ meson (mass=782 MeV) is charge neutral and has total isospin $\boldsymbol{I}=\mathbf{0}$. For reasons we won't explain (g-parity) it mainly decays to a 3-pion channel. The pions, $\pi^{+}, \pi^{0}, \pi^{-}$are an $\mathrm{I}=1$ isotriplet. If you couple the three isospins together, the projections of the pion's isospin, m_{1}, m_{2}, m_{3}, couple to total isospin I and \boldsymbol{I}_{12} and projection \boldsymbol{M}. You must first couple the first two spins, $\boldsymbol{m}_{1}, \boldsymbol{m}_{2}$ to \boldsymbol{I}_{12} and spin \boldsymbol{M}_{12}. Then you couple I_{12}, M_{12} to m_{3} to get the I, M states.
In other words:

1. Write the $\left|\boldsymbol{I}_{\text {total }}=\mathbf{0}, \boldsymbol{M}=\mathbf{0}\right\rangle$ state in terms of $\left|\boldsymbol{I}_{\mathbf{1 2}}, \boldsymbol{M}_{\mathbf{1 2}}, \boldsymbol{m}_{\mathbf{3}}\right\rangle$ states.
2. Write the $\left|\boldsymbol{I}_{12}, \boldsymbol{M}_{12}, \boldsymbol{m}_{3}\right\rangle$ states in terms of the $\left|\boldsymbol{m}_{\mathbf{1}}, \boldsymbol{m}_{\mathbf{2}}, \boldsymbol{m}_{\mathbf{3}}\right\rangle$ states, where $\boldsymbol{m}_{\mathbf{3}}$ goes along for the ride.
3. Express the $\left|\boldsymbol{I}_{\text {total }}=\mathbf{0}, \boldsymbol{M}=\mathbf{0}\right\rangle$ state in terms of a sum over combinations $\left|\boldsymbol{m}_{\mathbf{1}}, \boldsymbol{m}_{\mathbf{2}}, \boldsymbol{m}_{\mathbf{3}}\right\rangle$ states.

PART I.

1. What values of \boldsymbol{I}_{12} contribute to the $\boldsymbol{\omega}$ decay?
2. Write the isospin portion of the ω wave function for pions with final momenta $\vec{k}_{1}, \vec{k}_{2}, \vec{k}_{3}$ as a sum of products of terms of the form, e.g. $\pi_{1}^{+} \pi_{2}^{-} \pi_{3}^{0}$.

$$
|\omega\rangle=?\left|\pi^{+} \pi^{-} \pi^{0}\right\rangle+?\left|\pi^{-} \pi^{+} \pi^{0}\right\rangle+?\left|\pi^{0} \pi^{-} \pi^{+}\right\rangle+\cdots,
$$

where you need to fill in the boxes. In the first term the pion with momentum $\overrightarrow{\boldsymbol{k}}_{1}$ is positive, the pion with momentum $\overrightarrow{\boldsymbol{k}}_{2}$ is negative and the pion with momentum $\overrightarrow{\boldsymbol{k}}_{3}$ is neutral.
3. What are the branching ratios to various combinations of m_{1}, m_{2}, m_{3} for the ω decay? I.e. what fraction of the decays are $\boldsymbol{\pi}^{0} \boldsymbol{\pi}^{0} \boldsymbol{\pi}^{0}$ and what fraction are $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{0}$?

PART II. (EXTRA CREDIT)

You can re-write the pion states in a "Cartesian" basis as $\pi_{x}, \pi_{y}, \pi_{z}$ defined by

$$
\begin{aligned}
\pi_{z} & =\pi_{0} \\
\pi_{x} & =\left(\pi^{-}-\pi^{+}\right) / \sqrt{2}, \\
\pi_{y} & =i\left(\pi^{+}+\pi^{-}\right) / \sqrt{2} .
\end{aligned}
$$

1. Using your Clebsch-Gordan skills write the scalar combination

$$
S=\vec{\pi}_{1} \cdot \vec{\pi}_{2}=\pi_{1, x} \pi_{2, x}+\pi_{1, y} \pi_{2, y}+\pi_{1, z} \pi_{2, z}
$$

in terms of $\boldsymbol{\pi}_{i}^{+, 0,-}$ operators.
2. In the Cartesian basis, using $\vec{\pi}_{1}, \vec{\pi}_{2}, \vec{\pi}_{3}$, write an expression involving all three labels $(1,2,3)$ with pion fields to the $3^{\text {rd }}$ order that is an isoscalar. (You may want to use cross products)
3. Rewrite this in terms of the $\boldsymbol{\pi}^{+, 0,-}$ basis.

Potentially Useful Information: You can use the following for coupling two multiplets with $j_{1}=j_{2}=1$. From HW:

$$
|J=0, M=0\rangle=\left(\left|m_{1}=1, m_{2}=-1\right\rangle+\left|m_{1}=-1, m_{2}=1\right\rangle-\left|m_{1}=0, m_{2}=0\right\rangle\right) / \sqrt{3}
$$

From lecture notes:

$$
\begin{aligned}
|J=1, M=1\rangle & =\left(\left|m_{1}=1, m_{2}=0\right\rangle-\left|m_{1}=0, m_{2}=1\right\rangle\right) / \sqrt{2} \\
|J=1, M=0\rangle & =\left(\left|m_{1}=1, m_{2}=-1\right\rangle-\left|m_{1}=-1, m_{2}=1\right\rangle\right) / \sqrt{2} \\
|J=1, M=-1\rangle & =\left(\left|m_{1}=0, m_{2}=-1\right\rangle-\left|m_{1}=-1, m_{2}=0\right\rangle\right) / \sqrt{2}
\end{aligned}
$$

Solutions:

1. only $\boldsymbol{I}_{12}=1$ can couple with $\boldsymbol{I}_{3}=\mathbf{1}$ to give $\boldsymbol{I}=\mathbf{0}$.
2. Using the first equation above, with $m_{1} \rightarrow M_{12}$ and $m_{2} \rightarrow m_{3}$ and $J \rightarrow I$,

$$
|I=0, M=0\rangle=\frac{1}{\sqrt{3}}\left\{\left|M_{12}=1, m_{3}=-1\right\rangle+\left|M_{12}=-1, m_{3}=1\right\rangle-\left|M_{12}=0, m_{3}=0\right\rangle\right\}
$$

Now plugging in the lower expressions where $M \rightarrow M_{12}$,

$$
|I=0, M=0\rangle=\frac{1}{\sqrt{6}}\{|+, 0,-\rangle-|+,-, 0\rangle-|0,+,-\rangle+|0,-,+\rangle+|-,+, 0\rangle-|-, 0,+\rangle\}
$$

3. There is no strength to $|\mathbf{0}, \mathbf{0}, \mathbf{0}\rangle$, so the decay goes $\mathbf{1 0 0 \%}$ to $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}$.

Solutions to Extra Credit:

1.

$$
S=\pi_{1}^{0} \pi_{2}^{0}+\pi_{1}^{+} \pi_{2}^{-}+\pi_{1}^{-} \pi_{2}^{+}
$$

2.

$$
\left(\vec{\pi}_{1} \times \vec{\pi}_{2}\right) \cdot \vec{\pi}_{3}
$$

3.

$$
\begin{aligned}
\left(\vec{\pi}_{1} \times \vec{\pi}_{2}\right) \cdot \overrightarrow{\pi_{3}} & =\pi_{1 x} \pi_{2 y} \pi_{3 z}-\pi_{1 y} \pi_{2 x} \pi_{3 z}+\pi_{1 y} \pi_{2 z} \pi_{3 x}-\pi_{1 z} \pi_{2 y} \pi_{3 x}+\pi_{1 z} \pi_{2 z} \pi_{3 x}-\pi_{1 x} \pi_{2 z} \pi_{3 y} \\
& \frac{1}{2}\left[i\left(\pi_{1}^{-}-\pi_{1}^{+}\right)\left(\pi_{2}^{+}+\pi_{2}^{-}\right)-i\left(\pi_{1}^{+}+\pi_{1}^{-}\right)\left(\pi_{2}^{-}-\pi_{2}^{+}\right) \pi_{3}^{0}\right. \\
& +i\left(\pi_{2}^{-}-\pi_{2}^{+}\right)\left(\pi_{3}^{+}+\pi_{3}^{-}\right)-i\left(\pi_{2}^{+}+\pi_{2}^{-}\right)\left(\pi_{3}^{-}-\pi_{3}^{+}\right) \pi_{1}^{0} \\
& \left.+i\left(\pi_{3}^{-}-\pi_{3}^{+}\right)\left(\pi_{1}^{+}+\pi_{1}^{-}\right)-i\left(\pi_{3}^{+}+\pi_{3}^{-}\right)\left(\pi_{1}^{-}-\pi_{1}^{+}\right) \pi_{2}^{0}\right] \\
& =-i \pi_{1}^{+} \pi_{2}^{-} \pi_{3}^{0}+i \pi_{1}^{-} \pi_{2}^{+} \pi_{3}^{0}+i \pi_{1}^{+} \pi_{2}^{0} \pi_{3}^{-}-i \pi_{1}^{-} \pi_{2}^{0} \pi_{3}^{+}-i \pi_{1}^{0} \pi_{2}^{+} \pi_{3}^{-}+i \pi_{1}^{0} \pi_{2}^{-} \pi_{3}^{+} .
\end{aligned}
$$

Aside from overall constant in $(i / \sqrt{6})$, this is the same as answer to number 2.

