your name(s)

Physics 852 Exercise #3 - Friday, Jan. 28th

The ω meson (mass=782 MeV) is charge neutral and has total isospin I = 0. For reasons we won't explain (*g*-parity) it mainly decays to a 3-pion channel. The pions, π^+ , π^0 , π^- are an I=1 isotriplet. If you couple the three isospins together, the projections of the pion's isospin, m_1, m_2, m_3 , couple to total isospin I and I_{12} and projection M. You must first couple the first two spins, m_1, m_2 to I_{12} and spin M_{12} . Then you couple I_{12} , M_{12} to m_3 to get the I, M states.

In other words:

- 1. Write the $|I_{\text{total}} = 0, M = 0\rangle$ state in terms of $|I_{12}, M_{12}, m_3\rangle$ states.
- 2. Write the $|I_{12}, M_{12}, m_3\rangle$ states in terms of the $|m_1, m_2, m_3\rangle$ states, where m_3 goes along for the ride.
- 3. Express the $|I_{\text{total}} = 0, M = 0\rangle$ state in terms of a sum over combinations $|m_1, m_2, m_3\rangle$ states.

PART I.

- 1. What values of I_{12} contribute to the ω decay?
- 2. Write the isospin portion of the ω wave function for pions with final momenta $\vec{k_1}, \vec{k_2}, \vec{k_3}$ as a sum of products of terms of the form, e.g. $\pi_1^+ \pi_2^- \pi_3^0$.

$$|\omega\rangle = ?|\pi^+\pi^-\pi^0\rangle + ?|\pi^-\pi^+\pi^0\rangle + ?|\pi^0\pi^-\pi^+\rangle + \cdots,$$

where you need to fill in the boxes. In the first term the pion with momentum $\vec{k_1}$ is positive, the pion with momentum $\vec{k_2}$ is negative and the pion with momentum $\vec{k_3}$ is neutral.

3. What are the branching ratios to various combinations of m_1, m_2, m_3 for the ω decay? I.e. what fraction of the decays are $\pi^0 \pi^0 \pi^0$ and what fraction are $\pi^+ \pi^- \pi^0$?

PART II. (EXTRA CREDIT)

You can re-write the pion states in a "Cartesian" basis as π_x, π_y, π_z defined by

$$egin{aligned} \pi_z &= \pi_0 \ \pi_x &= (\pi^- - \pi^+)/\sqrt{2}, \ \pi_y &= i(\pi^+ + \pi^-)/\sqrt{2}. \end{aligned}$$

1. Using your Clebsch-Gordan skills write the scalar combination

$$S=ec{\pi_1}\cdotec{\pi_2}=\pi_{1,x}\pi_{2,x}+\pi_{1,y}\pi_{2,y}+\pi_{1,z}\pi_{2,z}$$

in terms of $\pi_i^{+,0,-}$ operators.

- 2. In the Cartesian basis, using $\vec{\pi}_1, \vec{\pi}_2, \vec{\pi}_3$, write an expression involving all three labels (1,2,3) with pion fields to the 3rd order that is an isoscalar. (You may want to use cross products)
- 3. Rewrite this in terms of the $\pi^{+,0,-}$ basis.

Potentially Useful Information: You can use the following for coupling two multiplets with $j_1 = j_2 = 1$. From HW:

$$|J=0,M=0
angle=(|m_1=1,m_2=-1
angle+|m_1=-1,m_2=1
angle-|m_1=0,m_2=0
angle)/\sqrt{3}.$$

From lecture notes:

$$egin{aligned} |J=1,M=1
angle = (|m_1=1,m_2=0
angle - |m_1=0,m_2=1
angle)/\sqrt{2},\ |J=1,M=0
angle = (|m_1=1,m_2=-1
angle - |m_1=-1,m_2=1
angle)/\sqrt{2},\ |J=1,M=-1
angle = (|m_1=0,m_2=-1
angle - |m_1=-1,m_2=0
angle)/\sqrt{2}. \end{aligned}$$