\qquad

Physics 852 Exercise 12 - Friday, March 25

Scalars, Four-Vectors and Lorentz Boosts

1) Consider a four-velocity along the \boldsymbol{x}-axis,

$$
\boldsymbol{u}^{\mu}=\left(\begin{array}{c}
\gamma \\
\gamma v \\
0 \\
0
\end{array}\right), \quad \gamma \equiv \frac{1}{\sqrt{1-v^{2}}}
$$

Show that $\boldsymbol{u}^{2}=1$.
2) The matrix that boost a four-vector by this velocity is

$$
L^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
\gamma & \gamma v & 0 & 0 \\
\gamma v & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

By considering the Jacobian of the transformation, show that $d^{4} p=d p_{0} d p_{x} d p_{y} d p_{z}$ is a Lorentz invariant.
3) Using the fact that $\delta\left(\boldsymbol{p}^{2}-\boldsymbol{m}^{2}\right)$ is a scalar, where \boldsymbol{m} is the mass and \boldsymbol{p} is a four-vector, show that $\boldsymbol{d}^{3} p / \boldsymbol{E}_{\boldsymbol{p}}$ is a Lorentz invariant, where $\boldsymbol{E}_{\boldsymbol{p}}=\sqrt{|\overrightarrow{\boldsymbol{p}}|^{2}+\boldsymbol{m}^{2}}$.
4) Using (3), show that $\left(\boldsymbol{E}_{\boldsymbol{p}}+\boldsymbol{E}_{\boldsymbol{p}^{\prime}}\right) \boldsymbol{\delta}\left(\overrightarrow{\boldsymbol{p}}-\vec{p}^{\prime}\right)$ is a Lorentz invariant. Hint: Consider the indefinite integral

$$
\int \frac{d^{3} p^{\prime}}{E_{p^{\prime}}}\left(E_{p}+E_{p^{\prime}}\right) \delta\left(\vec{p}-\vec{p}^{\prime}\right)
$$

FYI: This means that the field operator

$$
\Phi(x)=\int \frac{d^{3} p}{E}\left\{a(\vec{p}) e^{-i p \cdot x}+a^{\dagger}(\vec{p}) e^{i p \cdot x}\right\}
$$

is a Lorentz scalar if one defines the creation and destruction operators as $\left[\boldsymbol{a}(\vec{p}), a^{\dagger}\left(\vec{p}^{\prime}\right)\right]=\boldsymbol{E}_{p} \boldsymbol{\delta}\left(\overrightarrow{\boldsymbol{p}}-\vec{p}^{\prime}\right)$.
5) Consider two four velocities, \boldsymbol{u} and \boldsymbol{n}, where \boldsymbol{n} represents the lab frame,

$$
n^{\mu}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

Show that the Lorentz boost matrix defined as,

$$
L^{\mu \nu}(u, n)=g^{\mu \nu}+2 u^{\mu} n^{\nu}-\frac{\left(u^{\mu}+n^{\mu}\right)\left(u^{\nu}+n^{\nu}\right)}{1+u \cdot n}
$$

reproduces L in (2) when $\overrightarrow{\boldsymbol{u}}$ is along the \boldsymbol{x} axis.
6) Show that

$$
L^{\mu \nu} n_{\nu}=u^{\mu}
$$

7) Show that

$$
L^{\mu \alpha}(n, u) L_{\alpha}^{\nu}(u, n)=g^{\mu \nu}
$$

