\qquad

Physics 852 Exercise \#11 - Friday, April. 15th
Consider the scalar field operator (in one dimension),

$$
\Phi(x, t)=\frac{1}{\sqrt{L}} \sum_{k} \frac{1}{\sqrt{2 \omega_{k}}}\left[a_{k} e^{-i \omega_{k} t+i k x}+a_{k}^{\dagger} e^{i \omega_{k} t-i k x}\right]
$$

$\boldsymbol{\omega}_{\boldsymbol{k}}=\boldsymbol{E}_{\boldsymbol{k}} / \hbar$. One creates a state $|\boldsymbol{\eta}\rangle$, which for positive times is defined as

$$
|\eta(t)\rangle_{I}=\exp \left\{i \int d t^{\prime} d x j\left(x, t^{\prime}\right) \Phi\left(x, t^{\prime}\right)\right\}|0\rangle
$$

where $\boldsymbol{j}\left(\boldsymbol{x}, \boldsymbol{t}^{\prime}\right)$ is a real function and is zero for $\boldsymbol{t}^{\prime}>\boldsymbol{t}$.

1. Find the commutation relation for $\left[\Phi(x, t), \dot{\Phi}\left(x^{\prime}, t\right)\right]$.
2. Show that the $\langle\boldsymbol{\eta} \mid \boldsymbol{\eta}\rangle=1$. (hint: should be very short)
3. Rewrite $|\boldsymbol{\eta}(\boldsymbol{t})\rangle$ using the operators $\boldsymbol{a}_{\boldsymbol{k}}$ and $\boldsymbol{a}_{\boldsymbol{k}}^{\dagger}$ instead of $\boldsymbol{\Phi}(\boldsymbol{x}, \boldsymbol{t})$, and assume that $\boldsymbol{j}\left(\boldsymbol{t}^{\prime}>\boldsymbol{t}\right)=\mathbf{0}$. Your expression should use the Fourier transforms of $j(x, t)$,

$$
\tilde{j}(k, \omega) \equiv \int d x d t e^{-i \omega t+i k x} j(x, t)
$$

4. Find an expression for $\langle\boldsymbol{\eta}| \boldsymbol{a}_{k}^{\dagger} \boldsymbol{a}_{\boldsymbol{k}}|\boldsymbol{\eta}\rangle$. Note that $\langle\boldsymbol{\eta}| \boldsymbol{a}_{\boldsymbol{k}}^{\dagger} \boldsymbol{a}_{\boldsymbol{k}}|\boldsymbol{\eta}\rangle$ in the Schrödinger representation is the same as $\langle\boldsymbol{\eta}(t)| \boldsymbol{a}_{\boldsymbol{k}}^{\dagger}(\boldsymbol{t}) \boldsymbol{a}_{\boldsymbol{k}}(\boldsymbol{t})|\boldsymbol{\eta}(\boldsymbol{t})\rangle$ in the Heisenberg representation.
5. Find an expression for the net number of particles.
6. Find an expression for $\langle\boldsymbol{\eta}| a_{k}^{\dagger} a_{q}^{\dagger} a_{q} a_{k}|\boldsymbol{\eta}\rangle$.
