your name(s) \qquad

Physics 852 Exercise \#10-Friday, April. 2nd

Chirality

Consider the chirality operator,

$$
\gamma_{5}=i \gamma_{0} \gamma_{x} \gamma_{y} \gamma_{z}=i \beta \beta \alpha_{x} \beta \alpha_{y} \beta \alpha_{z}=-i \alpha_{x} \alpha_{y} \alpha_{z}
$$

1. Show that γ_{5} is Hermitian.
2. Show that $\gamma_{5}^{2}=\mathbb{I}$. (this shows that γ_{5} behaves as a scalar under rotations and boosts)
3. What are the eigenvalues of γ_{5}
4. Show that $\left(1+\gamma_{5}\right) / 2$ and $\left(1-\gamma_{5}\right) / 2$ are projection operators.
5. Show that γ_{5} commutes with the Hamiltonian for massless particles,

$$
H=\vec{\alpha} \cdot \vec{p},
$$

but does not commute with \boldsymbol{H} if a mass term

$$
\boldsymbol{H}_{M}=\beta m
$$

is added.
6. Write γ_{5} in the chiral representation.
7. "Prove" that

$$
\frac{1}{3!} \sum_{i j k} \epsilon_{i j k} \alpha_{i} \alpha_{j} \alpha_{k} \alpha_{\ell}=i \gamma_{5} \alpha_{\ell}=\frac{1}{2} \sum_{i j} \epsilon_{i j \ell} \alpha_{i} \alpha_{j}=i \Sigma_{\ell}
$$

You can use the fact that γ_{5} is rotationally invariant.
8. For massless particles, the Dirac equation is

$$
\begin{aligned}
(\vec{\alpha} \cdot \hat{p}) u_{\vec{p}, s} & =u_{\vec{p}, s} \\
(\vec{\alpha} \cdot \hat{p}) v_{-\vec{p}, s} & =-v_{-\vec{p}, s} .
\end{aligned}
$$

Exploiting the information above, show that for massless particles,

$$
\begin{aligned}
\gamma_{5} u_{\vec{p}, s} & =(\vec{\Sigma} \cdot \hat{p}) u_{\vec{p}, s}, \\
\gamma_{5} v_{-\vec{p}, s} & =-(\vec{\Sigma} \cdot \hat{p}) v_{-\vec{p}, s} .
\end{aligned}
$$

Comment: In the standard model the weak interaction couples only to neutrinos of a given chirality, e.g. the terms coupling to neutrinos appears as $\left(1-\gamma_{5}\right) \gamma_{\mu} \Psi(x)$. The operator γ_{5} has odd parity, so the operator $\left(1-\gamma_{5}\right)$ mixes even and odd parity maximally. Thus, in the famous experiment of Chien-Shiung Wu https://en.wikipedia.org/wiki/Chien-Shiung_Wu, the direction of neutrinos (a vector) lined up with the direction of the magnetic field (a pseudo vector) thus demonstrating that in the weak interaction the choice of right-handed vs. left-handed coordinate systems is no longer arbitrary, and represents a striking violation of parity conservation.

