

Physics 852 Exercise #1 - Friday, Jan. 16nd

Consider two kinds of spinless particles, whose masses are m_A and m_B . The particles exist in a one-dimensional world. We define field operators,

$$egin{aligned} \Phi_A(x) &= \sum_k rac{1}{\sqrt{LE_A(k)}} \left(a_k e^{ikx} + a_k^\dagger e^{-ikx}
ight), \ \Phi_B(x) &= \sum_k rac{1}{\sqrt{LE_B(k)}} \left(b_k e^{ikx} + b_k^\dagger e^{-ikx}
ight). \end{aligned}$$

Here, *L* is some large length. The interaction Hamiltonian is

$$H_{\text{int}} = g \int dx \,\Phi_A(x) \Phi_B(x)^2. \tag{0.1}$$

Now, let $m_A > 2m_B$, so that the heavier A particle can decay into two lighter B particles. Also assume the decay energy is sufficiently high that the lighter particles move relativistically, $E_B(k)^2 = (\hbar c)^2 k^2 + m_B^2$.

1. Calculate the matrix element $\mathcal{M}=\langle k_{B1},k_{B2}|H_{\mathrm{int}}|k_A=0\rangle$. Use the orthogonality of the momentum states:

$$\int dx\,e^{ik_1x}e^{ik_2x}=L\delta_{k_1,-k_2}.$$

Your answer should contain a Kronecker delta.

- 2. Calculate the decay rate, Γ , for the reaction $A \to 2B$ in lowest order perturbation theory. Express your answer in terms of m_A , m_B and g.
- 3. We have been working in units where m_A and m_B have units of energy. What are the dimensions of g? Check the dimensional consistency of your answer for Γ .