your name(s)

Physics 851 Exercise #9

Consider a particle of mass M confined to a two-dimensional circle of radius R. The particle moves in a periodic potential,

$$V(\phi + 2\pi/N) = V(\phi),$$

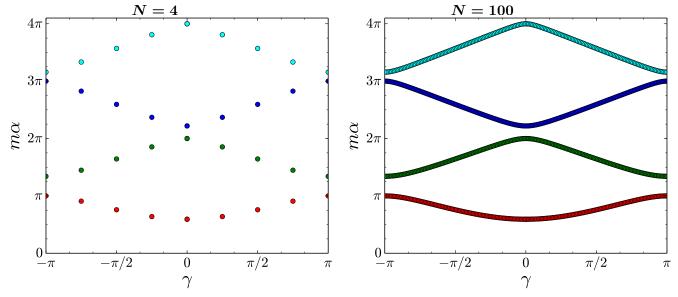
where N is an integer. Assuming the wave-function has the form,

$$\psi(\phi)=e^{im\phi}+Be^{-im\phi}, ~~0<\phi<2\pi/N,$$

and that the eigenvalue of the rotation operator, $\mathcal{R}(2\pi/N)$, were $e^{i\gamma}$, i.e.,

$$\psi(\phi+2\pi/N)=e^{i\gamma}\psi(\phi).$$

In your homework you showed that *m* could be found and that the allowed values of γ were $j\alpha$, where $\alpha = 2\pi/N$. You then considered a potential of the form,


$$V(\phi)=eta\sum_{k=1,N}\delta(\phi-2\pi k/N),$$

and found a transcendental equation for m,

$$egin{aligned} 0 &= p \sin(mlpha) + 2m \cos(mlpha) - 2m \cos(jlpha), \ \gamma &= j lpha, \ lpha &= 2\pi/N, \ p &= 2M eta R^2/\hbar^2. \end{aligned}$$

Write a program (you can use any packages you wish, to solve for the lowest 4 values of m as a function of γ . Plot $m\alpha$ (energy is $\hbar^2 m^2/2MR^2$) as a function of $\gamma = j\alpha$ for $-\pi \leq \gamma \leq \pi$. Assume $p\alpha = 5.0$ and make plots for N = 4 and for N = 100. Note that the function will be multi-valued because you will find the lowest four values of $m\alpha$ for each γ .

Solution:

