your name(s) \qquad

Physics 851 Exercise \#6 - Monday, October 18th

Continuing from Chapter 4, number 3 in the homework: You considered the matrices

$$
S_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), S_{y}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right), S_{z}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

1. Write the matrices

$$
S_{ \pm}=S_{x} \pm i S_{y}
$$

Show what happens when $S_{ \pm}$acts on each of the three basis vectors. (The basis vectors are the eigenvectors of $\boldsymbol{S}_{\boldsymbol{z}}$).
2. Write down the matrix that performs a rotation by an angle ϕ about the z axis, $\boldsymbol{R}_{z}(\phi)=e^{-i \boldsymbol{S}_{z} \phi / \hbar}$.
3. In this basis, we will define \hat{x}, \hat{y} and \hat{z} in terms of the basis vectors,

$$
\begin{aligned}
|m=1\rangle & =\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}(\hat{x}+i \hat{y}) \\
|m=0\rangle & =\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\hat{z} \\
|m=-1\rangle & =\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\frac{1}{\sqrt{2}}(\hat{x}-i \hat{y})
\end{aligned}
$$

Show that

$$
\begin{aligned}
& \hat{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right), \\
& \hat{y}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-i \\
0 \\
i
\end{array}\right), \\
& \hat{z}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

4. Apply the rotation matrix, $\boldsymbol{R}_{z}(\phi)$, on $\hat{\boldsymbol{x}}$, then express the result in terms of $\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}$ and $\hat{\boldsymbol{z}}$.
5. Find the matrix \boldsymbol{U} that transforms the coordinate system into one where

$$
\hat{x}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \hat{y}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \hat{z}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

6. Extra Credit: Transform $\boldsymbol{R}_{\boldsymbol{z}}(\phi)$ to this new basis, i.e. find $\boldsymbol{R}_{z}^{\prime}=\boldsymbol{U} \boldsymbol{R}_{\boldsymbol{z}} \boldsymbol{U}^{\dagger}$.
