\qquad

Physics 851 Exercise \#3

A beam of particles of \boldsymbol{N} particles of mass \boldsymbol{m} and momentum \boldsymbol{p} has a wave function spread over a large length L,

$$
\psi_{p}(x)=\frac{e^{i p x / \hbar}}{\sqrt{L}}
$$

While the beam is passing by the origin, a potential suddenly appears,

$$
V(x)=\left\{\begin{array}{cc}
0, & t<0 \\
-V_{0} \Theta(x+a / 2) \Theta(a / 2-x), & t>0
\end{array},\right.
$$

where Θ is a step function.

The depth of the potential is adjusted so that the ground state energy is $\mathbf{-} \boldsymbol{V}_{\mathbf{0}} / \mathbf{2}$. Assume the normalized wave function of the ground state has the form,

$$
\phi(x)=Z^{-1 / 2}\left\{\begin{array}{rl}
\cos (k x), & |x|<a / 2 \\
A e^{-q(|x|-a / 2)}, & |x|>a / 2
\end{array} .\right.
$$

1. What are \boldsymbol{q} and \boldsymbol{k} in terms of $\boldsymbol{V}_{\mathbf{0}}$ and \boldsymbol{m} ?

Solution:

The energy is $E=-V_{0} / \mathbf{2}=-\hbar^{2} \boldsymbol{q}^{2} / \mathbf{2 m}$ is the same as the kinetic energy inside the well, $\hbar^{2} \boldsymbol{k}^{2} / \mathbf{2}$, aside from the sign.

$$
q=k=\sqrt{\frac{2 m\left(V_{0} / 2\right)}{\hbar^{2}}}
$$

2. What is \boldsymbol{A} in terms of \boldsymbol{q} ?

Solution:

The first BC is

$$
\cos (k a / 2)=A
$$

3. What is \boldsymbol{Z} in terms of \boldsymbol{q} and \boldsymbol{a} ?

Solution:

You need to do some integrals,

$$
\begin{align*}
Z & =2 A \int_{a / 2}^{\infty} d x e^{-2 q(x-a / 2)}+\int_{-a / 2} a / 2 d x \cos ^{2}(k x) \tag{0.1}\\
& =\frac{A}{q}+\frac{1}{2} \int_{-a / 2} a / 2 d x(1+\cos (2 k x)) \\
& =\frac{A}{q}+\frac{a}{2}+\frac{\sin (k a)}{2 k} .
\end{align*}
$$

4. If there is a single particle, what is the probability it will fall into the ground state? Express your answer in terms of $\boldsymbol{q}, \boldsymbol{a}, \boldsymbol{A}$ and \boldsymbol{Z}.

Solution:

Square the overlap between the plane wave and the ground state.

$$
\begin{aligned}
P_{0} & =\frac{1}{L}|\alpha|^{2}, \\
\alpha & \equiv \int_{-\infty}^{\infty} d x e^{-i p x / \hbar} \psi_{0}(x) \\
& =\alpha_{I}+\alpha_{I I}+\alpha_{I I I}, \\
\alpha_{I I I} & =\int_{a / 2}^{\infty} d x e^{i p x / \hbar} A e^{-q(x-a / 2)} \\
& =A e^{i p a / 2 \hbar} \int_{a / 2}^{\infty} d x e^{i p(x-a / 2) / \hbar} e^{-q(x-a / 2)} \\
& =A e^{i p a / 2 \hbar} \frac{1}{q-i p / \hbar}, \\
\alpha_{I} & =e^{-i p a / 2 \hbar} \int_{-\infty}^{a / 2} d x e^{i p(x+a / 2) / \hbar} A e^{q(x+a / 2)} \\
& =A e^{-i p a / 2 \hbar} \frac{1}{q+i p / \hbar}, \\
\alpha_{I}+\alpha_{I I} & =2 A \cos (p a / 2 \hbar) \frac{q}{q^{2}+p^{2} / \hbar^{2}}-2 A \sin (p a / 2 \hbar) \frac{p / \hbar}{q^{2}+p^{2} / \hbar^{2}}, \\
\alpha_{I I} & =\int_{-a / 2}^{a / 2} d x \cos (p x / \hbar) \cos (k x) \\
& =\frac{1}{2} \int_{-a / 2}^{a / 2} d x[\cos (p x / \hbar+k x)+\cos (p x / \hbar-k x)] \\
& =\frac{\sin (p a / 2 \hbar+k a / 2)}{p \hbar+k}+\frac{\sin (p a / 2 \hbar-k a / 2)}{p / \hbar-k}
\end{aligned}
$$

5. In terms of $\boldsymbol{q}, \boldsymbol{a}, \boldsymbol{A}, \boldsymbol{Z}$ and the density (number per unit length), $\boldsymbol{\rho}=\boldsymbol{N} / \boldsymbol{L}$, what is the average number of particles that will be in the ground state at large times?

Solution:

$$
\bar{N}=P_{0} N=\frac{\alpha^{2}}{L} \rho L=\rho \alpha^{2} .
$$

6. For $\boldsymbol{t}<\mathbf{0}$ how many states of momentum \boldsymbol{p} are there per differential momentum, i.e. what is $d N_{\text {states }} / d p$?

Solution:

The BC for an infinite well of length L gives

$$
\begin{align*}
p L / \hbar & =N \pi, \quad N=1,2,3, \cdots \tag{0.2}\\
\frac{d N}{d p} & =\frac{L}{\pi \hbar},(\text { eigenstates of positive }) p \\
\frac{d N}{d p} & =\frac{L}{2 \pi \hbar},(\text { momentum states }),-\infty<p<\infty
\end{align*}
$$

7. For $t<0$ what is the average occupancy of a momentum state with momentum p if the momentum distribution is proportional to $e^{-E / T}$?

Solution:

Normalize the Gaussian, i.e. find f_{0}

$$
\begin{aligned}
N & =\sum_{p} f_{0} e^{-E / T} \\
& =\frac{L}{2 \pi \hbar} \int d p f_{0} e^{-p^{2} / 2 m T} \\
& =f_{0} \frac{L}{2 \pi \hbar} \sqrt{2 \pi m T} \\
f_{0} & =\rho \sqrt{\frac{2 \pi \hbar^{2}}{m T}} \\
f(p) & =f_{0} e^{-p^{2} / 2 m T}
\end{aligned}
$$

8. Assuming the thermal distribution above, write an integral to express out how many particles are in the ground state for $\boldsymbol{t}>\mathbf{0}$. (Don't perform the integral)

Solution:

$$
\begin{aligned}
\bar{N}_{\mathrm{tot}} & =\sum_{p} f(p) P_{0}(p) \\
& =L \int \frac{d p}{2 \pi \hbar} f(p) \frac{\alpha^{2}(p)}{L} \\
& =f_{0} \int \frac{d p}{2 \pi \hbar} e^{-p^{2} / 2 m T} \alpha^{2}(p)
\end{aligned}
$$

