your name(s) \qquad

Physics 851 Exercise \#3-Monday, Sep. 272021
A beam of particles of \boldsymbol{N} particles of mass \boldsymbol{m} and momentum \boldsymbol{p} has a wave function spread over a large length L,

$$
\psi_{p}(x)=\frac{e^{i p x / \hbar}}{\sqrt{L}}
$$

While the beam is passing by the origin, a potential suddenly appears,

$$
V(x)=\left\{\begin{array}{cc}
0, & t<0 \\
-V_{0} \Theta(x+a / 2) \Theta(a / 2-x), & t>0
\end{array},\right.
$$

where $\boldsymbol{\Theta}$ is a step function.

The depth of the potential is adjusted so that the ground state energy is $\mathbf{- V _ { 0 }} \mathbf{/ 2}$.
Assume the normalized wave function of the ground state has the form,

$$
\phi(x)=Z^{-1 / 2}\left\{\begin{array}{rl}
\cos (k x), & |x|<a / 2 \\
A e^{-q(|x|-a / 2)}, & |x|>a / 2
\end{array} .\right.
$$

1. What are \boldsymbol{q} and \boldsymbol{k} in terms of $\boldsymbol{V}_{\mathbf{0}}$ and \boldsymbol{m} ?
2. What is \boldsymbol{A} in terms of \boldsymbol{q} ?
3. What is \boldsymbol{Z} in terms of \boldsymbol{q} and \boldsymbol{a} ?
4. If there is a single particle, what is the probability it will fall into the ground state? Express your answer in terms of $\boldsymbol{q}, \boldsymbol{a}, \boldsymbol{A}$ and \boldsymbol{Z}.
5. In terms of $\boldsymbol{q}, \boldsymbol{a}, \boldsymbol{A}, \boldsymbol{Z}$ and the density (number per unit length), $\rho=\boldsymbol{N} / \boldsymbol{L}$, what is the average number of particles that will be in the ground state at large times?
6. For $\boldsymbol{t}<\mathbf{0}$ how many states of momentum \boldsymbol{p} are there per differential momentum, i.e. what is $d N_{\text {states }} / d p$?
7. For $t<0$ what is the average occupancy of a momentum state with momentum \boldsymbol{p} if the momentum distribution is proportional to $e^{-E / T}$?
8. Assuming the thermal distribution above, write an integral to express out how many particles are in the ground state for $\boldsymbol{t}>\mathbf{0}$. (Don't perform the integral)
