\qquad

Physics 851 Exercise \#2

Neutral Kaon Oscillations: There are two kinds of neutral kaons one can make using down and strange quarks,

$$
\left|K^{0}\right\rangle=|d \bar{s}\rangle, \quad\left|\bar{K}^{0}\right\rangle=|s \bar{d}\rangle .
$$

If it weren't for the weak interaction, the two species would have equal masses, and the Hamiltonian (for a kaon with zero momentum) would be

$$
H_{0}=\left(\begin{array}{cc}
M & 0 \\
0 & M
\end{array}\right)
$$

However, there is an additional term from the weak interaction that mixes the states,

$$
H_{m}=\left(\begin{array}{ll}
\mathbf{0} & \epsilon \\
\boldsymbol{\epsilon} & \mathbf{0}
\end{array}\right)
$$

The masses of a neutral kaon are 497.6 MeV , without mixing, but after adding the mixing term the masses differ by $3.56 \boldsymbol{\mu} \mathrm{~V}$. The two eigenstates are known as $\boldsymbol{K}_{\boldsymbol{S}}$ (K-short) and $\boldsymbol{K}_{\boldsymbol{L}}$ (K-long), because they decay with quite different lifetimes.

1. What is ϵ ?

Solution:

A unitary transformation will change $\sigma_{\boldsymbol{x}}$ into $\sigma_{\boldsymbol{z}}$, which will transform $\boldsymbol{H}_{\boldsymbol{m}}$ into:

$$
H_{m}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

which diagonalizes \boldsymbol{H}. The mass difference it thus $2 \boldsymbol{\epsilon}$. So, $\boldsymbol{\epsilon}=3.56 \boldsymbol{\mu} \mathrm{eV} / 2=1.78 \boldsymbol{\mu} \mathrm{eV}$.
2. If one creates a kaon in the $\boldsymbol{K}_{\mathbf{0}}$ state at time $\boldsymbol{t}=\mathbf{0}$, find the probability it would be measured as a \bar{K}^{0} as a function of time.

Solution:

$$
\begin{aligned}
|\psi(t=0)\rangle & =\binom{1}{0} \\
\psi(t)\rangle & =e^{-i H t / \hbar}|\psi(t=0)\rangle \\
& =e^{-i M t / \hbar}\left[\cos (\epsilon t / \hbar)-i \sigma_{x} \sin (\epsilon t / \hbar)\right]\binom{1}{0} \\
& =\binom{\cos (\epsilon t / \hbar)}{-i \sin (\epsilon t \hbar)} .
\end{aligned}
$$

Probability of being in $\left|\overline{\boldsymbol{K}}_{\mathbf{0}}\right\rangle$ state is $\sin ^{2}(\boldsymbol{\epsilon} \boldsymbol{t} / \hbar)$
3. A beam kaons is created in the $\boldsymbol{K}_{\mathbf{0}}$ channel and has a kinetic energy of 600 MeV per kaon. Plot the probability that the kaon is in the $\boldsymbol{K}_{\mathbf{0}}$ state as a function of the distance traveled, \boldsymbol{x}. Ignore the fact that the kaons decay.

Solution:

The energy is $\boldsymbol{E}=\boldsymbol{m}+\boldsymbol{K} \boldsymbol{E}$ and $\gamma=\boldsymbol{E} / \boldsymbol{m}$, or $\gamma \boldsymbol{v}=\sqrt{(\boldsymbol{E} / \boldsymbol{m})^{2}-1}=1.966$. The proper time is

$$
\tau=\frac{x}{\gamma v c}=\frac{x}{c \sqrt{(E / m)^{2}-1} c}=x /(1.966 c) .
$$

Probability of being in original $\boldsymbol{K}_{\mathbf{0}}$ state is

$$
P_{K 0}(x)=\cos ^{2}(\epsilon \tau / \hbar)=\cos ^{2}(x \epsilon /(\gamma v \hbar c))
$$

Using $\hbar c=1.97326^{-7} \mathrm{eV}$ m,

$$
P_{K 0}(x)=\cos ^{2}\left(\epsilon x /(\gamma v / c \hbar c)=\cos ^{2}(4.59 x)\right.
$$

where \boldsymbol{x} is in meters.
4. Repeat (c), but take into account the decays. The states

$$
\begin{aligned}
\left|K_{S}\right\rangle & =\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right) \\
\left|K_{L}\right\rangle & =\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right)
\end{aligned}
$$

known at \boldsymbol{K}-short and \boldsymbol{K}-long, represent the eigenstates of the Hamiltonian. The lifetime of a $\boldsymbol{K}_{\boldsymbol{L}}$ is 51.2 ns , and the lifetime of the $\boldsymbol{K}_{\boldsymbol{S}}$ is 0.0896 ns . Note that the wave function should be modified by the factor $e^{-t /(2 \tau)}$ to take decays into account decays of lifetime τ.

Solution:

Write the original $\left|\boldsymbol{K}_{\mathbf{0}}\right\rangle$ as

$$
|\psi(t=0)\rangle=\frac{1}{2}\left[\binom{1}{1}+\binom{1}{-1}\right]
$$

so

$$
|\psi(\tau)\rangle=\frac{1}{2} e^{-i \bar{M} t / \hbar}\left[\binom{1}{1} e^{-i \epsilon t / \hbar-t / 2 \tau_{L}}+\binom{1}{-1} e^{i \epsilon t / \hbar-t / 2 \tau_{S}} .\right]
$$

The probability of being in the original state is thus

$$
P_{K 0}(t)=\frac{1}{4}\left|e^{-i \epsilon t / \hbar-t / 2 \tau_{L}}+e^{i \epsilon t / \hbar-t / 2 \tau_{S}}\right|^{2} .
$$

In terms of \boldsymbol{x} make substitution $t \rightarrow \boldsymbol{x} /(\gamma \boldsymbol{v} \boldsymbol{c})$,

$$
\begin{aligned}
P_{K 0}(t) & =\frac{1}{4}\left|e^{-i \epsilon x /(\gamma(v / c) \hbar c)-x /\left(2 \gamma v \tau_{L}\right)}+e^{i \epsilon x /(\gamma(v / c) \hbar c)-x /\left(2 \gamma v \tau_{S}\right)}\right|^{2} \\
& =\frac{1}{4}\left\{e^{-x /\left(\gamma v \tau_{L}\right)}+e^{-x /\left(\gamma v \tau_{S}\right)}+2 \cos (2 \epsilon t / \hbar) e^{-x /\left(2 \gamma v \tau_{L}\right)} e^{-x /\left(2 \gamma v \tau_{S}\right)}\right\} .
\end{aligned}
$$

The short component and the interference term die quickly and leaves the long component. The probability one is in the original $\boldsymbol{K}_{\mathbf{0}}$ state then is roughly $1 / 4$ multiplied the slow decay factor for \boldsymbol{K}_{L}, i.e.,

$$
P_{K 0} \sim(1 / 4) e^{-x /\left(\gamma v \tau_{L}\right)}
$$

Given that $\gamma \boldsymbol{v} 1.97 c$ and that the speed of light is $30 \mathrm{~cm} / \mathrm{ns}$, this gives a decay length, $\boldsymbol{\lambda}=\gamma \boldsymbol{v} \tau_{L}$ of around 30 meters.

FYI: If the above were exactly true, the \boldsymbol{K}_{S} state would be even under CP while the $\boldsymbol{K}_{\boldsymbol{L}}$ would be odd under $\boldsymbol{C P}$. Here, CP is an operator that changes particles to anti-particles. If the particle-antiparticle symmetry were exact, the CP operator would commute with the Hamiltonian and the eigenstates of the Hamiltonian, \boldsymbol{K}_{S} and $\boldsymbol{K}_{\boldsymbol{L}}$, would have to be eigenstates of $\boldsymbol{C P}$. The $\boldsymbol{K}_{\boldsymbol{S}}$ would then decay to two pions and the K_{L} could decay to three pions. However, there is an additional small CP violating term in the Hamiltonian which allows $\boldsymbol{K}_{\boldsymbol{L}}$ to have a small probability of decaying to two pions. This was the first experimental laboratory observation of CP violation. CP violation is required to explain the preponderance of matter vs. anti-matter in the universe.

