
your name(s)

Physics 851 Exercise #2

Neutral Kaon Oscillations: There are two kinds of neutral kaons one can make using down and strange
quarks,

|K0〉 = |ds̄〉, |K̄0〉 = |sd̄〉.

If it weren’t for the weak interaction, the two species would have equal masses, and the Hamiltonian (for
a kaon with zero momentum) would be

H0 =

(
M 0
0 M

)
.

However, there is an additional term from the weak interaction that mixes the states,

Hm =

(
0 ε
ε 0

)
.

The masses of a neutral kaon are 497.6 MeV, without mixing, but after adding the mixing term the masses
differ by 3.56µeV. The two eigenstates are known as KS (K-short) and KL (K-long), because they decay
with quite different lifetimes.

1. What is ε?

Solution:
A unitary transformation will change σx into σz, which will transformHm into:

Hm =

(
1 0
0 −1

)
,

which diagonalizesH . The mass difference it thus 2ε. So, ε = 3.56 µeV/2=1.78 µeV.

2. If one creates a kaon in the K0 state at time t = 0, find the probability it would be measured as a
K̄0 as a function of time.

Solution:

|ψ(t = 0)〉 =

(
1
0

)
,

ψ(t)〉 = e−iHt/~|ψ(t = 0)〉

= e−iMt/~ [cos(εt/~)− iσx sin(εt/~)]

(
1
0

)
=

(
cos(εt/~)
−i sin(εt~)

)
.

Probability of being in |K̄0〉 state is sin2(εt/~)

3. A beam kaons is created in the K0 channel and has a kinetic energy of 600 MeV per kaon. Plot the
probability that the kaon is in the K0 state as a function of the distance traveled, x. Ignore the fact
that the kaons decay.



Solution:
The energy is E = m+KE and γ = E/m, or γv =

√
(E/m)2 − 1 = 1.966. The proper time is

τ =
x

γvc
=

x

c
√

(E/m)2 − 1c
= x/(1.966c).

Probability of being in originalK0 state is

PK0(x) = cos2(ετ/~) = cos2(xε/(γv~c))

Using ~c = 1.97326−7 eV m,

PK0(x) = cos2(εx/(γv/c~c) = cos2(4.59x)

where x is in meters.

4. Repeat (c), but take into account the decays. The states

|KS〉 =
1
√

2
(|K0〉+ |K̄0〉),

|KL〉 =
1
√

2
(|K0〉 − |K̄0〉),

known at K-short and K-long, represent the eigenstates of the Hamiltonian. The lifetime of a KL

is 51.2 ns, and the lifetime of the KS is 0.0896 ns. Note that the wave function should be modified
by the factor e−t/(2τ) to take decays into account decays of lifetime τ .

Solution:
Write the original |K0〉 as

|ψ(t = 0)〉 =
1

2

[(
1
1

)
+

(
1
−1

)]
so

|ψ(τ )〉 =
1

2
e−iM̄t/~

[(
1
1

)
e−iεt/~−t/2τL +

(
1
−1

)
eiεt/~−t/2τS .

]
The probability of being in the original state is thus

PK0(t) =
1

4

∣∣∣e−iεt/~−t/2τL + eiεt/~−t/2τS
∣∣∣2 .

In terms of xmake substitution t→ x/(γvc),

PK0(t) =
1

4

∣∣∣e−iεx/(γ(v/c)~c)−x/(2γvτL) + eiεx/(γ(v/c)~c)−x/(2γvτS)
∣∣∣2

=
1

4

{
e−x/(γvτL) + e−x/(γvτS) + 2 cos(2εt/~)e−x/(2γvτL)e−x/(2γvτS)

}
.



The short component and the interference term die quickly and leaves the long component. The
probability one is in the original K0 state then is roughly 1/4 multiplied the slow decay factor for
KL, i.e.,

PK0 ∼ (1/4)e−x/(γvτL).

Given that γv 1.97c and that the speed of light is 30 cm/ns, this gives a decay length, λ = γvτL of
around 30 meters.

FYI: If the above were exactly true, the KS state would be even under CP while the KL would be odd
under CP . Here, CP is an operator that changes particles to anti-particles. If the particle-antiparticle
symmetry were exact, the CP operator would commute with the Hamiltonian and the eigenstates of
the Hamiltonian, KS and KL, would have to be eigenstates of CP . The KS would then decay to two
pions and the KL could decay to three pions. However, there is an additional small CP violating term
in the Hamiltonian which allows KL to have a small probability of decaying to two pions. This was
the first experimental laboratory observation of CP violation. CP violation is required to explain the
preponderance of matter vs. anti-matter in the universe.


