your name(s)

Physics 851 Exercise #2 - Monday, Sept. 20th

Neutral Kaon Oscillations: There are two kinds of neutral kaons one can make using down and strange quarks,

$$|K^0
angle = |dar{s}
angle, \; |ar{K}^0
angle = |sar{d}
angle.$$

If it weren't for the weak interaction, the two species would have equal masses, and the Hamiltonian (for a kaon with zero momentum) would be

$$H_0=\left(egin{array}{cc} M & 0 \ 0 & M \end{array}
ight).$$

However, there is an additional term from the weak interaction that mixes the states,

$$H_m=\left(egin{array}{cc} 0 & \epsilon \ \epsilon & 0 \end{array}
ight).$$

The masses of a neutral kaon are 497.6 MeV/ c^2 , without mixing, but after adding the mixing term the masses differ by $3.56 \mu eV/c^2$. The two eigenstates are known as K_S (K-short) and K_L (K-long), because they decay with quite different lifetimes.

- 1. What is ϵ ?
- 2. If one creates a kaon in the K_0 state at time t = 0, find the probability it would be measured as a \overline{K}^0 as a function of time.
- 3. A beam kaons is created in the K_0 channel and has a kinetic energy of 600 MeV per kaon. Plot the probability that the kaon is in the K_0 state as a function of the distance traveled, x. Ignore the fact that the kaons decay.
- 4. Repeat (c), but take into account the decays. The states

$$egin{aligned} |K_S
angle &=rac{1}{\sqrt{2}}(|K^0
angle+|ar{K}^0
angle),\ |K_L
angle &=rac{1}{\sqrt{2}}(|K^0
angle-|ar{K}^0
angle), \end{aligned}$$

known at *K*-short and *K*-long, represent the eigenstates of the Hamiltonian. The lifetime of a K_L is 51.2 ns, and the lifetime of the K_S is 0.0896 ns. Note that the wave function should be modified by the factor $e^{-t/(2\tau)}$ to take decays into account decays of lifetime τ .

FYI: If the above were exactly true, the K_S state would be even under CP while the K_L would be odd under *CP*. Here, CP is an operator that changes particles to anti-particles. If the particle-antiparticle symmetry were exact, the CP operator would commute with the Hamiltonian and the eigenstates of the Hamiltonian, K_S and K_L , would have to be eigenstates of *CP*. The K_S would then decay to two pions and the K_L could decay to three pions. However, there is an additional small CP violating term in the Hamiltonian (even smaller than the mixing term) which allows K_L to have a small probability of decaying to two pions. This was the first experimental laboratory observation of CP violation. CP violation is required to explain the preponderance of matter vs. anti-matter in the universe.