\qquad

Physics 851 Exercise \#14-Monday, Nov. 22

The Rutherford cross section for a charge e of wave number \boldsymbol{k} scattering off a target charge $Z \boldsymbol{e}$ is

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\text {Rutherford }}=\frac{Z^{2} e^{4} m^{2}}{(\hbar k)^{4}(1-\cos \theta)^{2}}
$$

Now, consider two charges, a positive charge $Z e$ at the origin and a negative charge $-Z e$ at $\boldsymbol{a} \hat{\boldsymbol{z}}$.

1. What is the differential cross section?
2. What are the angles at which the cross section vanishes?
3. On a logarithmic plot, graph the differential cross section vs. $\boldsymbol{\theta}$ for $\boldsymbol{k a}=\mathbf{1}, \mathbf{4}, \mathbf{1 0}$. Scale the cross section by the factor $Z^{2} e^{4} \boldsymbol{m}^{2} /(\hbar \boldsymbol{k})^{4}$.

Solution:

a) Multiply the cross section by f^{2}, with

$$
\begin{aligned}
f & =1-e^{i q_{z} a}, \quad \text { Note sign! } \\
|f|^{2} & =4 \sin ^{2}\left(q_{z} a / 2\right), \\
\frac{d \sigma}{d \Omega} & =4\left(\frac{d \sigma}{d \Omega}\right)_{\text {Rutherford }} \sin ^{2}\left(q_{z} a / 2\right) \\
& =4 \frac{Z^{2} e^{4} m^{2}}{(\hbar k)^{4}(1-\cos \theta)^{2}} \sin ^{2}[k a(1-\cos \theta) / 2]
\end{aligned}
$$

b)

$$
\begin{align*}
k a(1-\cos \theta) / 2 & =n \pi, \quad n=1,2,3 \cdots \tag{0.1}\\
\theta & =\cos ^{-1}\left\{1-\frac{2 n \pi}{k a}\right\}
\end{align*}
$$

Note that $\boldsymbol{n}=\mathbf{0}$ does not work because the Rutherford cross section goes to infinity in such a way that it cancels the zero.
c) Scaling the cross section by $\alpha=Z^{2} e^{4} m^{2} /(\hbar \boldsymbol{k})^{4}$,

$$
\begin{equation*}
\frac{1}{\alpha} \frac{d \sigma}{d \Omega}=\frac{4}{(1-\cos \theta)^{2}} \sin ^{2}[k a(1-\cos \theta) / 2] \tag{0.2}
\end{equation*}
$$

