your name(s) \qquad

Physics 851 Exercise \#14-Monday, Nov. 22
The Rutherford cross section for a charge e of wave number \boldsymbol{k} scattering off a target charge $Z e$ is

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\text {Rutherford }}=\frac{Z^{2} e^{4} m^{2}}{(\hbar k)^{4}(1-\cos \theta)^{2}}
$$

Now, consider two charges, a positive charge $Z e$ at the origin and a negative charge $-Z e$ at $a \hat{\boldsymbol{z}}$.

1. What is the differential cross section?
2. What are the angles at which the cross section vanishes?
3. On a logarithmic plot, graph the differential cross section vs. $\boldsymbol{\theta}$ for $\boldsymbol{k a}=\mathbf{1}, \mathbf{4}, \mathbf{1 0}$. Scale the cross section by the factor $Z^{2} e^{4} m^{2} /(\hbar k)^{4}$.
