\qquad

Physics 851 Exercise \#10-Monday, Nov. 8th

You have an electron in a Coulomb potential

$$
V(r)=-\frac{e^{2}}{r}, \quad \frac{e^{2}}{\hbar c}=\frac{1.0}{137.036}
$$

The reduced mass of an electron is $\boldsymbol{m} \boldsymbol{c}^{\mathbf{2}}=\mathbf{0 . 5 1 0 7} \mathrm{MeV}$ and $\hbar \boldsymbol{c}=197.327 \mathrm{eV} \cdot \mathrm{nm}$.
You will try to solve for the ground state energy using wave functions which are $\ell=\mathbf{0}$ eigenstates of the 3-D harmonic oscillator.

$$
\begin{aligned}
& \psi_{0}(\vec{r})=\left(\frac{1}{\pi b^{2}}\right)^{3 / 4} e^{-r^{2} / 2 b^{2}} \\
& \psi_{2}(\vec{r})=\sqrt{3 / 2}\left(\frac{1}{\pi b^{2}}\right)^{3 / 4}\left(2(r / b)^{2} / 3-1\right) e^{-r^{2} / 2 b^{2}} \\
& \psi_{4}(\vec{r})=\sqrt{15 / 8}\left(\frac{1}{\pi b^{2}}\right)^{3 / 4}\left(1-4(r / b)^{2} / 3+4(r / b)^{4} / 15\right) e^{-r^{2} / 2 b^{2}}
\end{aligned}
$$

Your variational wave function will be

$$
\psi(r)=a_{0} \psi_{0}(r)+a_{2} \psi_{2}(r)+a_{4} \psi_{4}(r)
$$

with the variational parameters being a_{0}, a_{2}, a_{4} and b.
Note that we can write the Hamiltonian for $\ell=\mathbf{0}$ spherical waves as:

$$
-\frac{(\hbar c)^{2}}{2 m c^{2}}\left(\partial_{r}^{2}+\frac{2}{r} \partial_{r}\right)-\frac{e^{2}}{r}
$$

The expectations of the KE operator are

$$
\begin{aligned}
K E_{m n}=\left\langle\psi_{m}\right| \frac{p^{2}}{2 m}\left|\psi_{n}\right\rangle & =-\frac{(\hbar c)^{2}}{4 m c^{2} b^{2}}\left\langle M_{r}=m+1\right|\left(a^{\dagger}-a\right)^{2}\left|N_{r}=n+1\right\rangle \\
& =\frac{(\hbar c)^{2}}{4 m c^{2} b^{2}}\left\{\begin{aligned}
3, & m=0, n=0 \\
7, & m=2, n=2 \\
11, & m=4, m=4 \\
-\sqrt{6}, & m=0, n=2 \\
0, & m=0, n=4 \\
-2 \sqrt{5}, & m=2, n=4
\end{aligned}\right.
\end{aligned}
$$

The expectations of the Coulomb potential are

$$
\left\langle\psi_{m}\right| V\left|\psi_{n}\right\rangle=-\frac{e^{2}}{b \sqrt{\pi}}\left\{\begin{aligned}
2, & m=0, n=0 \\
5 / 3, & m=2, n=2 \\
89 / 60, & m=4, n=4 \\
-\sqrt{2 / 3}, & m=0, n=2 \\
\sqrt{3 / 10} & m=0, n=4 \\
-\frac{11}{6 \sqrt{5}}, & m=2, n=4
\end{aligned}\right.
$$

1. Show that for $\ell=\mathbf{0}$ the spherical solutions for the three-dimensional harmonic oscillator are of the form

$$
\psi_{n, \ell=0}(r)=\frac{1}{\sqrt{4 \pi} r} \phi_{2 n+1}(r), \quad n=0,1,2, \ldots
$$

where ϕ_{n} are solutions to the 1-d harmonic oscillator.
2. Using the relations of the previous page, show that when you find the optimum wave function ψ, that

$$
\langle\psi| K E|\psi\rangle=-\frac{1}{2}\langle\psi| V|\psi\rangle .
$$

Hint: Consider the \boldsymbol{b}-dependence for $\boldsymbol{K} \boldsymbol{E}$ and \boldsymbol{V}.
3. Beginning with the python template,
https://people.nscl.msu.edu/~pratt/phy851/exercises/fall/exercise10_template.py write a program that finds the optimum values of the parameters b, a_{0}, a_{2} and a_{4}.
4. Plot the wave function alongside the exact solution.

FYI: Multi-dimensional minimization with Newton's method:
If you have a function to minimize, $\boldsymbol{y}(\overrightarrow{\boldsymbol{x}})$, you need to find $\overrightarrow{\boldsymbol{x}}$ that satisfies all the conditions

$$
\partial_{i} y=0
$$

If you guess at some value of \vec{x} that fails, i.e. $\partial_{i} \boldsymbol{y}(\vec{x}) \neq 0$, then you try a new value of \vec{x},

$$
\begin{aligned}
\vec{x} & \rightarrow \vec{x}+\delta \vec{x} \\
\delta \vec{x} & =-A_{i j}^{-1} \partial_{j} y, \\
A_{i j} & =\partial_{i} \partial_{j} y
\end{aligned}
$$

