your name(s) \qquad

Physics 851 Exercise \#1-Monday, Sept. 13th
Work in groups of 3 (assigned in class) to complete this assignment. You can use the following link to get some templates (with some of these steps already completed)
https:/ / people.nscl.msu.edu/ pratt/phy851
Templates can be found at the bottom of the web page. C++ users will have to install EIGEN3 package.
Using either C++ or python, write a program to create and manipulate the following 3×3 matrix,

$$
H=\left(\begin{array}{ccc}
1 & 2 i & 3 \\
-2 i & 2 & -2 i \\
3 & 2 i & 3
\end{array}\right)
$$

1. On your laptop, create the matrix \boldsymbol{H}, then find its inverse. Multiply them together and print the product, showing that its unity.
2. Find the eigenvalues and eigenvectors. Print out the eigenvectors as a matrix, and print out the eigenvector with the lowest eigenvalue.
3. Demonstrate that for each eigenvector, \boldsymbol{v}_{ℓ}, that $\boldsymbol{H} \boldsymbol{v}_{\boldsymbol{\ell}}=\boldsymbol{\lambda}_{\ell} \boldsymbol{v}_{\ell}$.
4. Show that if the matrix of eigenvalues is called \boldsymbol{U}^{\dagger}, with each column representing an eigenvector, that the matrix $\boldsymbol{U} \boldsymbol{H} \boldsymbol{U}^{\dagger}$ is diagonalized with the eigenvalues found above.
5. Choose a constant \boldsymbol{B} so that the lowest eigenvalue of $\boldsymbol{H}-\boldsymbol{B}$ has an absolute value larger than the absolute value of any other eigenvalue of $\boldsymbol{H}-\boldsymbol{B}$. Then take a vector \boldsymbol{v} with all its elements set to unity. Then write a loop where you contract $\boldsymbol{H}-\boldsymbol{B}$ and \boldsymbol{v} to get a new vector \boldsymbol{v},

$$
v=(H-B) v
$$

then normalize \boldsymbol{v} and repeat \boldsymbol{n} times. Demonstrate that for large \boldsymbol{n} you reproduce the eigenvector of \boldsymbol{H} with the lowest eigenvalue, i.e. the ground state wave function if \boldsymbol{H} is a Hamiltonian.

