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1. Consider a two-component system with the original Hamiltonian,

H0 = Aσz, A > 0.

A time t = 0 one adds an additional potential

V = gσx.

(a) (10 pts) If at time t = 0 the system is in the ground state of H0, find the probability for
being in that original ground state as a function of time.

(b) (10 pts) To second order in perturbation theory (where V is the perturbation), what is the
ground state energy?

(c) (10 pts) What is the exact solution for the eigen-energies of the full Hamiltonian?
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2. Consider the states

|η〉 = exp
{
i(ηa† + η∗a)

}
|0〉,

|γ〉 = exp
{
i(γa† + γ∗a)

}
|0〉,

Here, η and γ are complex numbers, and a† and a are creation and annihilation operators
respectively.

(a) (10 pts) Calculate 〈η|η〉.
(b) (10 pts) Calculate 〈γ|η〉.
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3. (20 pts) Two point charges are positioned in a line along the z axis, with a distance a separating
the charges. A beam with momentum p is incident on the charges along the z axis. The scattering
can be considered as a perturbative process. In order to determine the distance a, you measure
the directions at which the differential cross section is the smallest. In terms of a and p, list the
angles for which all the scattering is smallest. Use θ for the polar angle, the angle relative to the
z axis, and φ for the azimuthal angle.
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Extra space for #3
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4. Consider a particle of mass m in a three-dimensional potential

V (r) = −βδ(r − a), β > 0.

(a) (10 pts) In terms of β and m, what is the minimum value of a for which one has a bound
state?

(b) (10 pts) Assuming β is above the value above, what is the s−wave phase shift as a function
of the magnitude of the momentum, ~k?
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5. (30 pts) Consider a ONE-DIMENSIONAL world, where a non-relativistic particle of mass M
is in the ground state of a harmonic oscillator characterized by frequency ω0. These massive
particles are created and destroyed with field operators, Ψ(x). These particles, referred to as
Ψ particles, can transform into Φ particles, which have exactly the same mass but differ in that
they do not feel the harmonic oscillator potential. The Φ particles are created and destroyed
with field operators Φ(x). The Ψ(x) and Φ(x) field operators obey the commutation relations

[Ψ(x),Ψ†(y)] = δ(x− y), [Φ(x),Φ†(y)] = δ(x− y).

The perturbative interaction responsible for the transformation is

V = g

∫
dx
(
Ψ†(x)Φ(x) + Φ†(x)Ψ(x)

)
Using Fermi’s golden rule, calculate the rate of decay of Ψ particles into Φ particles.
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