Monday/Wednesday, December 2/4, 9:10-10:00 AM
This exam is worth 0 points

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x e^{-x^{2} / 2}=\sqrt{2 \pi} \\
& H=i \hbar \partial_{t}, \vec{P}=-i \hbar \nabla \\
& \sigma_{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right), \sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \\
& U(t,-\infty)=1+\frac{-i}{\hbar} \int_{-\infty}^{t} d t^{\prime} V\left(t^{\prime}\right) U\left(t^{\prime},-\infty\right) \\
&\left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right),\left\langle p \mid p^{\prime}\right\rangle=\frac{1}{2 \pi \hbar} \delta\left(p-p^{\prime}\right) \\
&|p\rangle=\int d x|x\rangle e^{i p x / \hbar},|x\rangle=\int \frac{d p}{2 \pi \hbar}|p\rangle e^{-i p x / \hbar}, \\
& H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}=\hbar \omega\left(a^{\dagger} a+1 / 2\right) \\
& a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar} X-i \sqrt{\frac{1}{2 \hbar m \omega}} P} \\
& \psi_{0}(x)=\frac{1}{\left(\pi b^{2}\right)^{1 / 4}} e^{-x^{2} / 2 b^{2}}, b^{2}=\frac{\hbar}{m \omega} \\
& \rho(\vec{r}, t)=\psi^{*}\left(\vec{r}_{1}, t_{1}\right) \psi\left(\vec{r}_{2}, t_{2}\right) \\
& \vec{j}(\vec{r}, t)=\frac{-i \hbar}{2 m}\left(\psi^{*}(\vec{r}, t) \nabla \psi(\vec{r}, t)-\left(\nabla \psi^{*}(\vec{r}, t)\right) \psi(\vec{r}, t)\right) \\
&-\frac{e \vec{A}}{m c}|\psi(\vec{r}, t)|^{2} \\
& H=\frac{(\vec{P}-e \vec{A} / c)^{2}}{2 m}+e \Phi
\end{aligned}
$$

$$
\text { For } V=\beta \delta(x-y)
$$

$$
-\frac{\hbar^{2}}{2 m}\left(\left.\frac{\partial}{\partial x} \psi(x)\right|_{y+\epsilon}-\left.\frac{\partial}{\partial x} \psi(x)\right|_{y-\epsilon}\right)=-\beta \psi(y)
$$

$$
\vec{E}=-\nabla \Phi-\frac{1}{c} \partial t \vec{A}, \quad \vec{B}=\nabla \times \vec{A}
$$

$$
\omega_{\mathrm{cyclotron}}=\frac{e B}{m c}
$$

$$
e^{A+B}=e^{A} e^{B} e^{-C / 2}, \quad \text { if }[A, B]=C, \text { and }[C, A]=[C, B]=0
$$

$$
Y_{0,0}=\frac{1}{\sqrt{4 \pi}}
$$

$$
Y_{1,0}=\sqrt{\frac{3}{4 \pi}} \cos \theta
$$

$$
Y_{1, \pm 1}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \pm \phi}
$$

$$
\begin{aligned}
& |N\rangle=|n\rangle-\sum_{m \neq n}|m\rangle \frac{1}{\epsilon_{m}-\epsilon_{n}}\langle m| V|n\rangle+\cdots \\
& E_{N}=\epsilon_{n}+\langle n| V|n\rangle-\sum_{m \neq n} \frac{|\langle m| V| n\rangle\left.\right|^{2}}{\epsilon_{m}-\epsilon_{n}} \\
& j_{0}(x)=\frac{\sin x}{x}, n_{0}(x)=-\frac{\cos x}{x} \\
& j_{1}(x)=\frac{\sin x}{x^{2}}-\frac{\cos x}{x}, n_{1}(x)=-\frac{\cos x}{x^{2}}-\frac{\sin x}{x} \\
& j_{2}(x)=\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin x-\frac{3}{x^{2}} \cos x, n_{2}(x)=-\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \cos x-\frac{3}{x^{2}} \sin x, \\
& \frac{d}{d t} P_{i \rightarrow n}(t)=\frac{2 \pi}{\hbar}\left|V_{n i}\right|^{2} \delta\left(E_{n}-E_{i}\right), \\
& \frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left|\int d^{3} r \mathcal{V}(r) e^{i\left(\vec{k}_{f}-\vec{k}_{i}\right) \cdot \vec{r}}\right|^{2}, \\
& \sigma=\frac{\left(2 S_{R}+1\right)}{\left(2 S_{1}+1\right)\left(2 S_{2}+1\right)} \frac{4 \pi}{k^{2}} \frac{\left(\hbar \Gamma_{R} / 2\right)^{2}}{\left(\epsilon_{k}-\epsilon_{r}\right)^{2}+\left(\hbar \Gamma_{R} / 2\right)^{2}}, \\
& \frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {single }} \tilde{S}(\vec{q}), \quad \tilde{S}(\vec{q})=\left|\sum_{\delta \vec{a}} e^{i \vec{q} \cdot \delta \vec{a}}\right|^{2}, \\
& e^{i \vec{k} \cdot \vec{r}}=\sum_{\ell}(2 \ell+1) i^{\ell} j_{\ell}(k r) P_{\ell}(\cos \theta), \\
& P_{\ell}(\cos \theta)=\sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell, m=0}(\theta, \phi), \\
& P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\left(3 x^{2}-1\right) / 3, \\
& f(\Omega) \equiv \sum_{\ell}(2 \ell+1) e^{i \delta_{\ell}} \sin \delta_{\ell} \frac{1}{k} P_{\ell}(\cos \theta) \\
& \left.\psi_{\vec{k}}(\vec{r})\right|_{R \rightarrow \infty}=e^{i \vec{k} \cdot \vec{r}}+\frac{e^{i k r}}{r} f(\Omega), \\
& \frac{d \sigma}{d \Omega}=|f(\Omega)|^{2}, \\
& \sigma=\frac{4 \pi}{k^{2}} \sum_{\ell}(2 \ell+1) \sin ^{2} \delta_{\ell}, \\
& \int_{-\infty}^{\infty} d x e^{-x^{2} / 2}=\sqrt{2 \pi}, \\
& L_{ \pm}|\ell, m\rangle=\sqrt{\ell(\ell+1)-m(m \pm 1)}|\ell, m \pm 1\rangle .
\end{aligned}
$$

5. A neutron and proton occupy the ground state of a harmonic oscillator. The particles then feel two additional sources of interaction. First, they have a spin-spin interaction,

$$
V_{\text {s.s. }}=\alpha \mathrm{S}_{\mathrm{n}} \cdot \mathrm{~S}_{\mathrm{p}}
$$

and secondly, they experience an external magnetic field

$$
V_{b}=-\mathrm{B} \cdot\left(\mu_{n} \mathrm{~S}_{\mathrm{n}}+\mu_{p} \mathrm{~S}_{\mathrm{p}}\right)
$$

(a) (5 pts) If the magnetic field is zero, what are the energy levels? Note the degeneracy of each level.
(b) (5 pts) If the magnetic field is non-zero but the spin-spin coupling is neglected $(\boldsymbol{\alpha}=\mathbf{0})$, what are the energy eigenvalues? Again, note the degeneracy of each level.
(c) (10 pts) When $\boldsymbol{\alpha} \neq \mathbf{0}, \boldsymbol{B} \neq \mathbf{0}$, and $\overrightarrow{\boldsymbol{B}}$ points along the \boldsymbol{z} axis, which of the following operators commute with the Hamiltonian. Circle the correct choices, and no credit is given for wrong answers with good reasoning. (Note: $\vec{J} \equiv \vec{S}_{\mathrm{n}}+\vec{S}_{\mathrm{p}}$)
i. $|\vec{J}|^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$.
ii. J_{z}
iii. $\boldsymbol{J}_{\boldsymbol{x}}$
iv. $S_{\mathrm{n}, \boldsymbol{z}}$
v. $\boldsymbol{S}_{\mathrm{n}, \boldsymbol{x}}$
vi. $\left|\vec{S}_{\mathrm{n}}\right|^{2}$
vii. $\overrightarrow{\boldsymbol{S}}_{\mathrm{n}} \cdot \overrightarrow{\boldsymbol{S}}_{\mathrm{p}}$
6. A particle of mass \boldsymbol{m} scatters off a target with a spherically symmetric potential,

$$
V(r)=\beta \delta(r-R)
$$

(a) (10 pts) Find the $\boldsymbol{\ell}=\mathbf{0}$ phase shift as a function of the momentum \boldsymbol{p}.
(b) (5 pts) What is the cross-section in the limit that $\boldsymbol{p} \boldsymbol{0}$?
7. A two-level system is initially in the ground state. The initial Hamiltonian is

$$
H_{0}=V_{0} \sigma_{z}
$$

An interaction is added,

$$
V(t)=\beta(t) \sigma_{x}, \quad \beta(t<0)=0, \beta(t \rightarrow \infty)=\beta_{0}
$$

(a) (5 pts) What is the ground state wave function for $\boldsymbol{t}<\mathbf{0}$?
(b) (5 pts) What is the ground state wave function for $\boldsymbol{t} \rightarrow \boldsymbol{\infty}$?
(c) (5 pts) If the interaction is turned on suddenly, what is the probability the system is in the new ground state as $\boldsymbol{t} \rightarrow \infty$?
(d) (5 pts) If the interaction is turned on slowly, what is the probability the system is in the new ground state as $\boldsymbol{t} \rightarrow \infty$?
(e) (10 pts) To first order in perturbation theory, what is the new ground state wave function?
8. (30 pts) Consider a Brian particle of mass \boldsymbol{m} confined to a one-dimensional potential,

$$
V(x)=\left\{\begin{array}{cc}
\infty, & x<-a \\
0, & -a<x<a \\
\infty, & x>a
\end{array}\right.
$$

It can decay to a Brianna particle of the same mass, but the Brianna particle does not feel the potential. The Hamiltonian matrix element responsible for the decay is

$$
\langle 0, \text { Brian }| V \mid k, \text { Brianna }\rangle=\frac{\alpha e^{-k^{2} b^{2} / 2}}{\sqrt{L}}
$$

where the momentum of the Brianna particle is $\hbar \boldsymbol{k}$, the large length of the plane wave $|\boldsymbol{k}\rangle$ is \boldsymbol{L}, and the constant $\boldsymbol{\alpha}$ is small. What is the Brian-particle decay rate? Present your answer in terms of $\boldsymbol{\alpha}, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{V}$ and \boldsymbol{m}.
9. (20 pts) Consider a particle of mass \boldsymbol{m} in a one-dimensional harmonic oscillator potential with fundamental frequency $\boldsymbol{\omega}$,

$$
H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}
$$

To second order in perturbation theory, what is the correction to the ground state energy when the perturbation

$$
V=\beta P
$$

is added to the system.
10. In a two-level system, a system finds itself in an eigenstate of $\boldsymbol{\sigma}_{\boldsymbol{y}}$ with eigenvalue $+\mathbf{1}$
(a) (10 pts) Write the density matrix $\boldsymbol{\rho}_{+}$.
(b) (5 pts) What is $\boldsymbol{\rho}_{+}^{2}$.
(c) (5 pts) If one is now incoherently occupying eigenstates with both eigenvalues of σ_{y} with equal probability, what is the new density matrix?
(d) (5 pts) What is the square of this density matrix?
11. A particle of mass \boldsymbol{m} and charge \boldsymbol{e} is placed in a region with uniform magnetic field \boldsymbol{B} along the z axis.
(a) (5 pts) Write the vector potential that describes the magnetic field such that $\overrightarrow{\boldsymbol{A}}$ is in the $\hat{\boldsymbol{y}}$ direction.
(b) (5 pts) Write the Hamiltonian with this vector potential.
(c) (5 pts) Circle the quantities that commute with the Hamiltonian?
i. $\boldsymbol{P}_{\boldsymbol{x}}$
ii. $\boldsymbol{P}_{\boldsymbol{y}}$
iii. \boldsymbol{P}_{z}
iv. $P_{x}-e A_{x} / c$
v. $P_{y}-e A_{y} / c$
vi. $P_{z}-e A_{z} / c$
(d) (10 pts) Consider the notation where the eigenstate wave functions for a one-dimensional Harmonic oscillator Hamiltonian,

$$
H=-\frac{\hbar^{2} \partial_{u}^{2}}{2 m}+\frac{1}{2} m \omega^{2} u^{2}
$$

are labeled $\phi_{n}(\boldsymbol{m}, \boldsymbol{\omega}, \boldsymbol{u})$. Write the most general three-dimensional wavefunctions that are eigenstates of the Hamiltonian with the vector potential $\overrightarrow{\boldsymbol{A}}$ used above. This form should incorporate ALL possible eigenstates. Express your answer in terms of ϕ_{n} plane wave forms. Be sure to list all the quantum numbers that are used to span the space. Also, in terms of these quantum numbers, express the eigen-energies of the wave functions.

