\qquad

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x e^{-x^{2} /\left(2 a^{2}\right)}=a \sqrt{2 \pi}, \\
& H=i \hbar \partial_{t}, \vec{P}=-i \hbar \nabla \\
& \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right), \\
& U(t,-\infty)=1+\frac{-i}{\hbar} \int_{-\infty}^{t} d t^{\prime} V\left(t^{\prime}\right) U\left(t^{\prime},-\infty\right) \\
&\left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right),\left\langle p \mid p^{\prime}\right\rangle=\frac{1}{2 \pi \hbar} \delta\left(p-p^{\prime}\right) \\
&|p\rangle=\int d x|x\rangle e^{i p x / \hbar},|x\rangle=\int \frac{d p}{2 \pi \hbar}|p\rangle e^{-i p x / \hbar} \\
& H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}=\hbar \omega\left(a^{\dagger} a+1 / 2\right) \\
& a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar} X-i \sqrt{\frac{1}{2 \hbar m \omega}} P} \begin{aligned}
\psi_{0}(x) & =\frac{1}{\left(\pi b^{2}\right)^{1 / 4}} e^{-x^{2} / 2 b^{2}}, b^{2}=\frac{\hbar}{m \omega} \\
\rho(\vec{r}, t) & =\psi^{*}\left(\vec{r}_{1}, t_{1}\right) \psi\left(\vec{r}_{2}, t_{2}\right) \\
\vec{j}(\vec{r}, t)=\frac{-i \hbar}{2 m}\left(\psi^{*}(\vec{r}, t) \nabla \psi(\vec{r}, t)\right. & \left.-\left(\nabla \psi^{*}(\vec{r}, t)\right) \psi(\vec{r}, t)\right)-\frac{e \vec{A}}{m c}|\psi(\vec{r}, t)|^{2} \\
H & =\frac{(\vec{P}-e \vec{A} / c)^{2}}{2 m}+e \Phi
\end{aligned}
\end{aligned}
$$

$$
\text { For } V=\beta \delta(x-y): \quad-\frac{\hbar^{2}}{2 m}\left(\left.\partial_{x} \psi(x)\right|_{y+\epsilon}-\left.\partial_{x} \psi(x)\right|_{y-\epsilon}\right)=-\beta \psi(y)
$$

$$
\vec{E}=-\nabla \Phi-\frac{1}{c} \partial_{t} \vec{A}, \quad \vec{B}=\nabla \times \vec{A}
$$

$$
\omega_{\text {cyclotron }}=\frac{e B}{m c}
$$

$$
\begin{gathered}
e^{A+B}=e^{A} e^{B} e^{-C / 2}, \quad \text { if }[A, B]=C,, \text { and }[C, A]=[C, B]=0 \\
Y_{0,0}=\frac{1}{\sqrt{4 \pi}}, \quad Y_{1,0}=\sqrt{\frac{3}{4 \pi}} \cos \theta, \quad Y_{1, \pm 1}=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \pm \phi}
\end{gathered}
$$

$$
Y_{2,0}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right), \quad Y_{2, \pm 1}=\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm i \phi}
$$

$$
Y_{2, \pm 2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \phi}, \quad Y_{\ell-m}(\theta, \phi)=(-1)^{m} \boldsymbol{Y}_{\ell m}^{*}(\theta, \phi)
$$

$$
|N\rangle=|n\rangle-\sum_{m \neq n}|m\rangle \frac{1}{\epsilon_{m}-\epsilon_{n}}\langle m| V|n\rangle+\cdots
$$

$$
E_{N}=\epsilon_{n}+\langle n| V|n\rangle-\sum_{m \neq n} \frac{|\langle m| V| n\rangle\left.\right|^{2}}{\epsilon_{m}-\epsilon_{n}}
$$

$$
\begin{aligned}
& j_{0}(x)=\frac{\sin x}{x}, n_{0}(x)=-\frac{\cos x}{x}, j_{1}(x)=\frac{\sin x}{x^{2}}-\frac{\cos x}{x}, n_{1}(x)=-\frac{\cos x}{x^{2}}-\frac{\sin x}{x} \\
& j_{2}(x)=\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin x-\frac{3}{x^{2}} \cos x, n_{2}(x)=-\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \cos x-\frac{3}{x^{2}} \sin x, \\
& \frac{d}{d t} P_{i \rightarrow n}(t)=\frac{2 \pi}{\hbar}\left|V_{n i}\right|^{2} \delta\left(E_{n}-E_{i}\right), \\
& \frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left|\int d^{3} r \mathcal{V}(r) e^{i\left(\vec{k}_{f}-\vec{k}_{i}\right) \cdot \vec{r}}\right|^{2}, \\
& \sigma=\frac{\left(2 S_{R}+1\right)}{\left(2 S_{1}+1\right)\left(2 S_{2}+1\right)} \frac{4 \pi}{k^{2}} \frac{\left(\hbar \Gamma_{R} / 2\right)^{2}}{\left(\epsilon_{k}-\epsilon_{r}\right)^{2}+\left(\hbar \Gamma_{R} / 2\right)^{2}}, \\
& \frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {single }} \tilde{S}(\vec{q}), \quad \tilde{S}(\vec{q})=\frac{1}{N}\left|\sum_{\vec{a}} e^{i \vec{q} \cdot \vec{a}}\right|^{2}=\sum_{\delta \vec{a}} e^{i \vec{q} \cdot \delta \vec{a}}, \\
& \left(\frac{d \sigma}{d \Omega}\right)_{\text {Rutherford }}=\frac{e^{4} Z_{1}^{2} Z_{2}^{2} m^{2}}{(\hbar k)^{4}(1-\cos \theta)^{2}} \\
& \frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Rutherford }}\left|\frac{1}{e} \int d^{3} r \rho(\vec{r}) e^{i \vec{q} \cdot \vec{r}}\right|^{2} \\
& e^{i \vec{k} \cdot \vec{r}}=\sum_{\ell}(2 \ell+1) i^{\ell} j_{\ell}(k r) P_{\ell}(\cos \theta), \\
& P_{\ell}(\cos \theta)=\sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell, m=0}(\theta, \phi), \\
& P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\left(3 x^{2}-1\right) / 3, \\
& f(\Omega) \equiv \sum_{\ell}(2 \ell+1) e^{i \delta_{\ell}} \sin \delta_{\ell} \frac{1}{k} P_{\ell}(\cos \theta) \\
& \left.\psi_{\vec{k}}(\vec{r})\right|_{R \rightarrow \infty}=e^{i \vec{k} \cdot \vec{r}}+\frac{e^{i k r}}{r} f(\Omega), \\
& \frac{d \sigma}{d \Omega}=|f(\Omega)|^{2}, \quad \sigma=\frac{4 \pi}{k^{2}} \sum_{\ell}(2 \ell+1) \sin ^{2} \delta_{\ell}, \quad \delta \approx-a k \\
& L_{ \pm}|\ell, m\rangle=\sqrt{\ell(\ell+1)-m(m \pm 1)}|\ell, m \pm 1\rangle, \\
& \langle\tilde{\boldsymbol{\beta}}, J, M| T_{q}^{k}\left|\beta, \ell, m_{\ell}\right\rangle=\left\langle J M \mid k, q, \ell, m_{\ell}\right\rangle \frac{\langle\tilde{\beta}, J|\left|T^{(k)}\right||\beta, \ell, J\rangle}{\sqrt{2 J+1}}, \\
& n=\frac{(2 s+1)}{(2 \pi)^{d}} \int_{k<k_{f}} d^{d} k, \quad d \text { dimensions }, \\
& \left\{\Psi_{s}(\vec{x}), \Psi_{s^{\prime}}^{\dagger}(\vec{y})\right\}=\delta^{3}(\vec{x}-\vec{y}) \delta_{s s^{\prime}}, \\
& \Psi_{s}^{\dagger}(\vec{r})=\frac{1}{\sqrt{V}} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}} a_{s}^{\dagger}(\vec{k}), \quad\left\{\Psi_{s}(\vec{x}), a_{\alpha}^{\dagger}\right\}=\phi_{\alpha, s}(\vec{x}) .
\end{aligned}
$$

\qquad

1. Type $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ particles exist in a ONE-DIMENSIONAL world. The $\boldsymbol{\alpha}$ particle has mass $\boldsymbol{M}_{\boldsymbol{\alpha}}$ and is described by the one-dimensional field operator (in the interaction representation) within a large length L,

$$
\begin{aligned}
\Phi_{\alpha}(x, t) & =\frac{1}{\sqrt{L}} \sum_{k} e^{-i E_{k} t / \hbar+i k x} a_{k} \\
\Phi_{\alpha}^{\dagger}(x, t) & =\frac{1}{\sqrt{L}} \sum_{k} e^{i E_{k} t / \hbar-i k x} a_{k}^{\dagger} \\
E_{k} & =M_{\alpha} c^{2}+\frac{\hbar^{2} k^{2}}{2 M_{\alpha}}
\end{aligned}
$$

The $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ particles are massless and described by the operators,

$$
\begin{aligned}
\Psi_{\beta}(x, t) & =\frac{1}{\sqrt{L}} \sum_{q} e^{-i E_{q} t / \hbar+i q x} b_{q} \\
\Psi_{\beta}^{\dagger}(x, t) & =\frac{1}{\sqrt{L}} \sum_{q} e^{i E_{q} t / \hbar-i q x} b_{q}^{\dagger} \\
\Psi_{\gamma}(x, t) & =\frac{1}{\sqrt{L}} \sum_{q} e^{-i E_{q} t / \hbar+i q x} c_{q} \\
\Psi_{\gamma}^{\dagger}(x, t) & =\frac{1}{\sqrt{L}} \sum_{q} e^{i E_{q} t / \hbar-i q x} c_{q}^{\dagger} \\
E_{q} & =\hbar c q
\end{aligned}
$$

The massive $\boldsymbol{\alpha}$ particle can decay to a $\boldsymbol{\beta}$ and a $\boldsymbol{\gamma}$ particle via the interaction

$$
H_{\mathrm{int}}=g \int d x\left[\Phi_{\alpha}(x, t) \Psi_{\beta}^{\dagger}(x, t) \Psi_{\gamma}^{\dagger}(x, t)+\Phi_{\alpha}^{\dagger}(x, t) \Psi_{\beta}(x, t) \Psi_{\gamma}(x, t)\right]
$$

where the coupling constant \boldsymbol{g} is small. The creation and destruction operators obey the commutation rules $\left[a_{k}, a_{k^{\prime}}^{\dagger}\right]=\delta_{k k^{\prime}},\left[b_{q}, b_{q^{\prime}}^{\dagger}\right]=\delta_{q q^{\prime}}$ and $\left[c_{q}, c_{q^{\prime}}^{\dagger}\right]=\delta_{q q^{\prime}}$.
(a) (5 pts) Evaluate the commutator $\left[\Phi_{\alpha}(x, t), \Phi_{\alpha}^{\dagger}\left(x^{\prime}, t\right)\right]$.
(b) (5 pts) What is the dimensionality of \boldsymbol{g} ?
(c) (25 pts) Calculate the rate at which an $\boldsymbol{\alpha}$ particle at rest decays into a $\boldsymbol{\beta}$ and a $\boldsymbol{\gamma}$ particle.

Your Name:
(Extra work space for \#1)

Your Name:
(Extra work space for \#1)
\qquad
2A (20 pts) Imagine you had calculated the following matrix element,

$$
\mathcal{M}=\left\langle\alpha, J_{f}=1, M_{f}=0\right| x^{2}+y^{2}-2 z^{2}\left|\beta, J_{i}=3, M_{i}=0\right\rangle
$$

For the following matrix elements, first state whether they are zero, and if not, express them in terms of $\boldsymbol{\mathcal { M }}$ and Clebsch-Gordan coefficients. You do NOT need to evaluate any ClebschGordan coefficients in your answers.

- $\left\langle\alpha, J_{f}=1, M_{f}=0\right| x^{2}+y^{2}+z^{2}\left|\beta, J_{i}=3, M_{i}=0\right\rangle$
- $\left\langle\alpha, J_{f}=1, M_{f}=0\right| z^{2}\left|\beta, J_{i}=3, M_{i}=0\right\rangle$
- $\left\langle\alpha, J_{f}=1, M_{f}=1\right| x z\left|\beta, J_{i}=3, M_{i}=1\right\rangle$
$\cdot\left\langle\alpha, J_{f}=1, M_{f}=1\right| x y\left|\beta, J_{i}=3, M_{i}=2\right\rangle$

Your Name:
(Extra work space for \#2A)
\qquad

2B (15 pts) Now, imagine you had calculated a matrix element,

$$
\mathcal{V}=\left\langle\alpha, J_{f}=1, M_{f}=0\right| P_{z}\left|\beta, J_{i}=0, M_{i}=0\right\rangle
$$

For all three values of $\boldsymbol{M}_{\boldsymbol{f}}$, express the following matrix elements in terms of \mathcal{V} and ClebschGordan coefficients. Again, You do NOT need to evaluate any Clebsch-Gordan coefficients in your answers. $\left\langle\boldsymbol{\alpha}, \boldsymbol{J}_{\boldsymbol{f}}=\mathbf{1}, \boldsymbol{M}_{\boldsymbol{f}}\right| \boldsymbol{P}_{\boldsymbol{x}}\left|\boldsymbol{\beta}, \boldsymbol{J}_{\boldsymbol{i}}=\mathbf{0}, \boldsymbol{M}_{\boldsymbol{i}}=\mathbf{0}\right\rangle$. Be sure to note when a matrix element vanishes.
\qquad
3 In the center of a ONE-DIMENSIONAL star, matter consists of weakly interacting electrons, protons and neutrons. The baryon density is $\boldsymbol{n}_{\boldsymbol{B}}$ baryons per length. Interactions of the type

$$
n \rightarrow e+p+\bar{\nu}, \quad e+p \rightarrow n+\nu
$$

can proceed with the neutrinos leaving the star until the energy is minimized for the given $\boldsymbol{n}_{\boldsymbol{B}}$. Assume the neutrons and protons have the same mass \boldsymbol{M}, and can be treated non-relativistically, whereas the electrons can be treated as if they are massless. Refer to the three Fermi wave numbers as $\boldsymbol{k}_{\boldsymbol{e}}, \boldsymbol{k}_{\boldsymbol{n}}$ and $\boldsymbol{k}_{\boldsymbol{p}}$.
(a) (15 pts) Write three equations involving $\boldsymbol{k}_{\boldsymbol{e}}, \boldsymbol{k}_{\boldsymbol{n}}$ and $\boldsymbol{k}_{\boldsymbol{p}}$, which when solved can yield the three Fermi wave numbers.
(b) (15 pts) Solve for the neutron fraction, i.e. the fraction of baryons that are neutrons.

Your Name:
(Extra work space for $\# 3$)

