Friday, Feb. 28, 1:50-2:40 PM
This exam is worth 60 quiz points

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x e^{-x^{2} / 2}=\sqrt{2 \pi}, \\
& \boldsymbol{H}=i \hbar \partial_{t}, \overrightarrow{\boldsymbol{P}}=-i \hbar \boldsymbol{\nabla}, \\
& \sigma_{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right), \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right), \\
& U(t,-\infty)=1+\frac{-i}{\hbar} \int_{-\infty}^{t} d t^{\prime} V\left(t^{\prime}\right) U\left(t^{\prime},-\infty\right), \\
& \left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right),\left\langle p \mid p^{\prime}\right\rangle=\frac{1}{2 \pi \hbar} \delta\left(p-p^{\prime}\right), \\
& |p\rangle=\int d x|x\rangle e^{i p x / \hbar}, \quad|x\rangle=\int \frac{d p}{2 \pi \hbar}|p\rangle e^{-i p x / \hbar}, \\
& H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}=\hbar \omega\left(a^{\dagger} a+1 / 2\right), \\
& a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}} X-i \sqrt{\frac{1}{2 \hbar m \omega}} P, \\
& \psi_{0}(x)=\frac{1}{\left(\pi b^{2}\right)^{1 / 4}} e^{-x^{2} / 2 b^{2}}, \quad b^{2}=\frac{\hbar}{m \omega}, \\
& \rho(\vec{r}, t)=\psi^{*}\left(\vec{r}_{1}, t_{1}\right) \psi\left(\vec{r}_{2}, t_{2}\right) \\
& \vec{j}(\vec{r}, t)=\frac{-i \hbar}{2 m}\left(\psi^{*}(\vec{r}, t) \nabla \psi(\vec{r}, t)-\left(\nabla \psi^{*}(\vec{r}, t)\right) \psi(\vec{r}, t)\right) \\
& -\frac{e \vec{A}}{m c}|\psi(\vec{r}, t)|^{2} . \\
& H=\frac{(\vec{P}-e \vec{A} / c)^{2}}{2 m}+e \Phi, \\
& \text { For } V=\beta \delta(x-y): \quad-\frac{\hbar^{2}}{2 m}\left(\left.\frac{\partial}{\partial x} \psi(x)\right|_{y+\epsilon}-\left.\frac{\partial}{\partial x} \psi(x)\right|_{y-\epsilon}\right)=-\beta \psi(y) \text {, } \\
& \vec{E}=-\nabla \Phi-\frac{1}{c} \partial t \vec{A}, \quad \vec{B}=\nabla \times \vec{A}, \\
& \omega_{\text {cyclotron }}=\frac{e B}{m c}, \\
& e^{A+B}=e^{A} e^{B} e^{-C / 2}, \quad \text { if }[A, B]=C, \text { and }[C, A]=[C, B]=0, \\
& Y_{0,0}=\frac{1}{\sqrt{4 \pi}}, \quad Y_{1,0}=\sqrt{\frac{3}{4 \pi}} \cos \theta, \quad Y_{1, \pm 1}=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \pm \phi}, \\
& Y_{2,0}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right), \quad Y_{2, \pm 1}=\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm i \phi}, \\
& Y_{2, \pm 2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \phi}, \quad Y_{\ell-m}(\theta, \phi)=(-1)^{m} \boldsymbol{Y}_{\ell m}^{*}(\theta, \phi) .
\end{aligned}
$$

$$
\begin{aligned}
& |N\rangle=|n\rangle-\sum_{m \neq n}|m\rangle \frac{1}{\epsilon_{m}-\epsilon_{n}}\langle m| V|n\rangle+\cdots \\
& E_{N}=\epsilon_{n}+\langle n| V|n\rangle-\sum_{m \neq n} \frac{|\langle m| V| n\rangle\left.\right|^{2}}{\epsilon_{m}-\epsilon_{n}} \\
& j_{0}(x)=\frac{\sin x}{x}, n_{0}(x)=-\frac{\cos x}{x}, j_{1}(x)=\frac{\sin x}{x^{2}}-\frac{\cos x}{x}, n_{1}(x)=-\frac{\cos x}{x^{2}}-\frac{\sin x}{x} \\
& j_{2}(x)=\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin x-\frac{3}{x^{2}} \cos x, n_{2}(x)=-\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \cos x-\frac{3}{x^{2}} \sin x, \\
& \frac{d}{d t} P_{i \rightarrow n}(t)=\frac{2 \pi}{\hbar}\left|V_{n i}\right|^{2} \delta\left(E_{n}-E_{i}\right), \\
& \frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left|\int d^{3} r \mathcal{V}(r) e^{i\left(\vec{k}_{f}-\vec{k}_{i}\right) \cdot \vec{r}}\right|^{2}, \\
& \sigma=\frac{\left(2 S_{R}+1\right)}{\left(2 S_{1}+1\right)\left(2 S_{2}+1\right)} \frac{4 \pi}{k^{2}} \frac{\left(\hbar \Gamma_{R} / 2\right)^{2}}{\left(\epsilon_{k}-\epsilon_{r}\right)^{2}+\left(\hbar \Gamma_{R} / 2\right)^{2}}, \\
& \frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {single }} \tilde{S}(\vec{q}), \quad \tilde{S}(\vec{q})=\left|\sum_{\delta \vec{a}} e^{i \vec{q} \cdot \delta \vec{a}}\right|^{2}, \\
& e^{i \vec{k} \cdot \vec{r}}=\sum_{\ell}(2 \ell+1) i^{\ell} j_{\ell}(k r) P_{\ell}(\cos \theta), \\
& P_{\ell}(\cos \theta)=\sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell, m=0}(\theta, \phi), \\
& P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\left(3 x^{2}-1\right) / 3, \\
& f(\Omega) \equiv \sum_{\ell}(2 \ell+1) e^{i \delta_{\ell}} \sin \delta_{\ell} \frac{1}{k} P_{\ell}(\cos \theta) \\
& \left.\psi_{\vec{k}}(\vec{r})\right|_{R \rightarrow \infty}=e^{i \vec{k} \cdot \vec{r}}+\frac{e^{i k r}}{r} f(\Omega), \\
& \frac{d \sigma}{d \Omega}=|f(\Omega)|^{2}, \quad \sigma=\frac{4 \pi}{k^{2}} \sum_{\ell}(2 \ell+1) \sin ^{2} \delta_{\ell}, \\
& L_{ \pm}|\ell, m\rangle=\sqrt{\ell(\ell+1)-m(m \pm 1)}|\ell, m \pm 1\rangle, \\
& C_{m_{\ell}, m_{s} ; J M}^{\ell, s}=\left\langle\ell, s, J, M \mid \ell, s, m_{\ell}, m_{s}\right\rangle, \\
& \langle\tilde{\beta}, J, M| T_{q}^{k}\left|\beta, \ell, m_{\ell}\right\rangle=C_{q m_{\ell} ; J M}^{k \ell} \frac{\langle\tilde{\beta}, J|\left|T^{(k)}\right||\beta, \ell, J\rangle}{\sqrt{2 J+1}}, \\
& n=\frac{(2 s+1)}{(2 \pi)^{d}} \int_{k<k_{f}} d^{d} k, \quad d \text { dimensions }, \\
& \left\{\Psi_{s}(\vec{x}), \Psi_{s^{\prime}}^{\dagger}(\vec{y})\right\}=\delta^{3}(\vec{x}-\vec{y}) \delta_{s s^{\prime}}, \\
& \Psi_{s}^{\dagger}(\vec{r})=\frac{1}{\sqrt{V}} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}} a_{s}^{\dagger}(\vec{k}), \quad\left\{\Psi_{s}(\vec{x}), a_{\alpha}^{\dagger}\right\}=\phi_{\alpha, s}(\vec{x}) .
\end{aligned}
$$

1. Consider a one-dimensional world where a type- \boldsymbol{A} particle of mass \boldsymbol{m} is confined by a harmonic oscillator potential,

$$
V_{a}(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

The particle can decay to a type- \boldsymbol{B} particle of the same mass, but the type- \boldsymbol{B} particle does not feel the potential. The interaction responsible for the decay is

$$
\begin{aligned}
H_{\mathrm{int}} & =g \int d x\left[\Psi_{A}^{\dagger}(x) \Psi_{B}(x)+\Psi_{B}^{\dagger}(x) \Psi_{A}(x)\right] \\
\Psi_{A}^{\dagger}(x) & =\frac{1}{\sqrt{L}} \sum_{k} e^{-i k x} a_{k}^{\dagger}, \quad \Psi_{B}^{\dagger}(x)=\frac{1}{\sqrt{L}} \sum_{k} e^{-i k x} b_{k}^{\dagger} .
\end{aligned}
$$

(a) (10 pts) Calculate the matrix element $\left\langle\boldsymbol{k}_{\boldsymbol{f}}\right| \boldsymbol{H}_{\mathrm{int}}|\boldsymbol{i}\rangle$, where $\boldsymbol{k}_{\boldsymbol{f}}$ is the momentum of the outgoing type- \boldsymbol{B} particle and \boldsymbol{i} refers to the initial state of the type- \boldsymbol{A} particle, which is in the ground state of the harmonic oscillator.
(b) (15 pts) Calculate the rate at which the type- \boldsymbol{A} particle decays into a type- \boldsymbol{B} particle.

$$
\langle f| H_{i n A}|i\rangle=\int_{i}^{(b)} g\left\langle\left. k_{f}\right|_{B} \psi_{B}(x) \mid 0\right\rangle\left\langle 0 / 2 b^{2}\right|
$$

$$
\begin{aligned}
& =\frac{g}{L^{1 / 2}} \int d x e^{-i k_{f} x} e^{-x^{2} / 2 b^{2}} \frac{1}{\left(\pi b^{2}\right)^{1 / 4}} \quad{ }^{-k_{f}^{2} x^{2} / 2}\left(\frac{1}{L^{1 / 2}} e^{-\frac{k_{0}}{}\left(\pi b^{2}\right)^{1 / 4} \int \frac{1}{\left(\pi b^{2}\right)^{1 / 4} e^{-x^{2} / 2 b^{2}}, b^{2}=\frac{\hbar}{m \omega}},}\right. \\
& =\frac{g}{-\frac{\left(x-i k_{f} b^{2}\right.}{2 b^{2}}},
\end{aligned}
$$

$$
\text { (b) } \Gamma=\frac{2 \pi}{\hbar} \sum_{k} \frac{g^{2}\left(4 \pi \hbar^{2}\right)^{1 / 2}}{L} e^{-k_{1}^{2} x^{2}} e^{-k_{i}^{b}} \delta\left(E_{r}-\hbar \omega / 2\right)
$$

(Extra work space for \#1)
2. Consider the following matrix element,

$$
\mathcal{M}_{m_{i} m_{f}}=\left\langle\alpha, \ell_{f}=1, m_{f}\right| P_{z}\left|\beta, \ell_{i}=2, m_{i}\right\rangle
$$

(a) (10 pts) For which combinations of $\boldsymbol{m}_{\boldsymbol{i}}, \boldsymbol{m}_{\boldsymbol{f}}$ is $\boldsymbol{\mathcal { M }}_{\boldsymbol{m}_{\boldsymbol{i}} \boldsymbol{m}_{\boldsymbol{f}}}$ non-zero?
(b) (15 pts) If one were to calculate the matrix element

$$
\mathcal{M}_{00}=\left\langle\alpha, \ell_{f}=1, m_{f}=0\right| P_{z}\left|\beta, \ell_{i}=2, m_{i}=0\right\rangle
$$

express all the non-zero elements of the operator $\boldsymbol{P}_{\boldsymbol{x}}$,

$$
\left\langle\alpha, \ell_{f}=1, m_{f}\right| P_{x}\left|\beta, \ell_{i}=2, m_{i}\right\rangle
$$

in terms of $\boldsymbol{\mathcal { M }}_{\mathbf{0 0}}$ and Clebsch-Gordan coefficients. You can leave your answer in terms of Clebsch-Gordan coefficients. In fact DO NOT evaluate the Clebsch Gordan coefficients.
a

$$
\begin{aligned}
& \begin{array}{c|c}
m_{i} & m_{f} \\
\hline 1 & 1 \\
0 & 0 \\
-1 & -1 \\
\hline \text { (b) } T_{0}^{1}=P_{z} & T_{ \pm 1}^{1}=\mp\left(P_{x} \pm i P_{y}\right) \frac{1}{\sqrt{2}} \\
P_{x}^{1}=\left(T_{-1}^{1}-T_{1}^{1}\right) \frac{1}{\sqrt{2}}
\end{array}, l
\end{aligned}
$$

(Extra work space for \#2)
3. Consider a zero-temperature non-interacting quark-gas (up and down quarks) which is also accompanied by electrons to balance the electric charge. The three species have Fermi momenta, $\hbar \boldsymbol{k}_{\boldsymbol{u}}, \hbar \boldsymbol{k}_{\boldsymbol{d}}$ and $\hbar \boldsymbol{k}_{\boldsymbol{e}}$. Assume all particles have ZERO MASS, which is not a bad assumption for very high densities. Normally, the density of a Fermi gas would be

$$
\rho=\frac{2 s+1}{6 \pi^{2}} k_{f}^{3}
$$

but for quarks there are also three colors for each of the two spins, so the degeneracy factor $(2 s+1) \rightarrow 6$. The electric charges of the three species are $\boldsymbol{q}_{u}=\mathbf{e} / \mathbf{3}, \boldsymbol{q}_{d}=-e / \mathbf{3}, \boldsymbol{q}_{e}=-e$. The baryon charge of either species of quarks is $\mathbf{1 / 3}$, whereas electrons carry no baryon density. The weak interaction,

$$
u+e \leftrightarrow d+\nu_{e}
$$

proceeds in such a way as to minimize the energy for a fixed baryon density, $\boldsymbol{\rho}_{\boldsymbol{B}}$, with the neutrinos being ignored because as massless neutral particles they can exit the system at will.
(a) (7 pts) Express $\boldsymbol{\rho}_{\boldsymbol{B}}$ in terms of the Fermi wave numbers $\boldsymbol{k}_{\boldsymbol{u}}, \boldsymbol{k}_{\boldsymbol{d}}$ and $\boldsymbol{k}_{\boldsymbol{e}}$.
(b) (7 pts) Express electric charge conservation in terms of the Fermi wave numbers.
(c) (7 pts) In terms of the Fermi wave numbers write an equation that expresses the fact that the overall energy is minimized.
(d) (4 pts) (no equations) Describe how you would go about finding the densities of each species given ρ_{B}.
(Extra work space for \#3)

