- Submit your exam via GRADESCOPE. Be sure that no page contains responses for more than one problem. Having different parts $2 \mathrm{~b}, 2 \mathrm{c} \cdots$ of a given problem on a single page is fine. Individual problems can span multiple pages.
- Once the exam is opened, you are to upload your answer within six hours.
- Do not write your name on the exam
- This exam is open-book, open-notes, open-internet but closed-mouth. You are permitted to use mathematical software, e.g. Mathematica. You are not to communicate with any other individuals regarding the exam, during the exam.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x e^{-x^{2} /\left(2 a^{2}\right)}=a \sqrt{2 \pi}, \\
& \boldsymbol{H}=i \hbar \boldsymbol{\partial}_{t}, \overrightarrow{\boldsymbol{P}}=-i \hbar \boldsymbol{\nabla}, \\
& \sigma_{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right), \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right), \\
& U(t,-\infty)=1+\frac{-i}{\hbar} \int_{-\infty}^{t} d t^{\prime} V\left(t^{\prime}\right) U\left(t^{\prime},-\infty\right), \\
& \left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right),\left\langle p \mid p^{\prime}\right\rangle=\frac{1}{2 \pi \hbar} \delta\left(p-p^{\prime}\right), \\
& |p\rangle=\int d x|x\rangle e^{i p x / \hbar}, \quad|x\rangle=\int \frac{d p}{2 \pi \hbar}|p\rangle e^{-i p x / \hbar}, \\
& H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}=\hbar \omega\left(a^{\dagger} a+1 / 2\right), \\
& a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}} X-i \sqrt{\frac{1}{2 \hbar m \omega}} P, \\
& \psi_{0}(x)=\frac{1}{\left(\pi b^{2}\right)^{1 / 4}} e^{-x^{2} / 2 b^{2}}, \quad b^{2}=\frac{\hbar}{m \omega}, \\
& \rho(\vec{r}, t)=\psi^{*}\left(\vec{r}_{1}, t_{1}\right) \psi\left(\vec{r}_{2}, t_{2}\right) \\
& \vec{j}(\vec{r}, t)=\frac{-i \hbar}{2 m}\left(\psi^{*}(\vec{r}, t) \nabla \psi(\vec{r}, t)-\left(\nabla \psi^{*}(\vec{r}, t)\right) \psi(\vec{r}, t)\right) \\
& -\frac{e \vec{A}}{m c}|\psi(\vec{r}, t)|^{2} . \\
& H=\frac{(\vec{P}-e \vec{A} / c)^{2}}{2 m}+e \Phi, \\
& \text { For } V=\beta \delta(x-y): \quad-\frac{\hbar^{2}}{2 m}\left(\left.\frac{\partial}{\partial x} \psi(x)\right|_{y+\epsilon}-\left.\frac{\partial}{\partial x} \psi(x)\right|_{y-\epsilon}\right)=-\beta \psi(y) \text {, } \\
& \vec{E}=-\nabla \Phi-\frac{1}{c} \partial_{t} \vec{A}, \quad \vec{B}=\nabla \times \vec{A}, \\
& \omega_{\text {cyclotron }}=\frac{e B}{m c}, \\
& e^{A+B}=e^{A} e^{B} e^{-C / 2}, \quad \text { if }[A, B]=C, \text { and }[C, A]=[C, B]=0, \\
& Y_{0,0}=\frac{1}{\sqrt{4 \pi}}, \quad Y_{1,0}=\sqrt{\frac{3}{4 \pi}} \cos \theta, \quad Y_{1, \pm 1}=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \pm \phi}, \\
& Y_{2,0}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right), \quad Y_{2, \pm 1}=\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm i \phi}, \\
& Y_{2, \pm 2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \phi}, \quad Y_{\ell-m}(\theta, \phi)=(-1)^{m} Y_{\ell m}^{*}(\theta, \phi) .
\end{aligned}
$$

$$
\begin{aligned}
& |N\rangle=|n\rangle-\sum_{m \neq n}|m\rangle \frac{1}{\epsilon_{m}-\epsilon_{n}}\langle m| V|n\rangle+\cdots \\
& \boldsymbol{E}_{N}=\epsilon_{n}+\langle n| V|n\rangle-\sum_{m \neq n} \frac{|\langle m| V| n\rangle\left.\right|^{2}}{\epsilon_{m}-\epsilon_{n}} \\
& j_{0}(x)=\frac{\sin x}{x}, n_{0}(x)=-\frac{\cos x}{x}, j_{1}(x)=\frac{\sin x}{x^{2}}-\frac{\cos x}{x}, n_{1}(x)=-\frac{\cos x}{x^{2}}-\frac{\sin x}{x} \\
& j_{2}(x)=\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin x-\frac{3}{x^{2}} \cos x, n_{2}(x)=-\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \cos x-\frac{3}{x^{2}} \sin x, \\
& \frac{d}{d t} P_{i \rightarrow n}(t)=\frac{2 \pi}{\hbar}\left|V_{n i}\right|^{2} \delta\left(E_{n}-E_{i}\right), \\
& \frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left|\int d^{3} r \mathcal{V}(r) e^{i\left(\vec{k}_{f}-\vec{k}_{i}\right) \cdot \vec{r}}\right|^{2}, \\
& \sigma=\frac{\left(2 S_{R}+1\right)}{\left(2 S_{1}+1\right)\left(2 S_{2}+1\right)} \frac{4 \pi}{k^{2}} \frac{\left(\hbar \Gamma_{R} / 2\right)^{2}}{\left(\epsilon_{k}-\epsilon_{r}\right)^{2}+\left(\hbar \Gamma_{R} / 2\right)^{2}}, \\
& \frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {single }} \tilde{S}(\vec{q}), \quad \tilde{S}(\vec{q})=\left|\sum_{\vec{a}} e^{i \vec{q} \cdot \vec{a}}\right|^{2}, \\
& e^{i \vec{k} \cdot \vec{r}}=\sum_{\ell}(2 \ell+1) i^{\ell} j_{\ell}(k r) P_{\ell}(\cos \theta), \\
& P_{\ell}(\cos \theta)=\sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell, m=0}(\theta, \phi), \\
& P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\left(3 x^{2}-1\right) / 3, \\
& f(\Omega) \equiv \sum_{\ell}(2 \ell+1) e^{i \delta_{\ell}} \sin \delta_{\ell} \frac{1}{k} P_{\ell}(\cos \theta) \\
& \left.\psi_{\vec{k}}(\vec{r})\right|_{R \rightarrow \infty}=e^{i \vec{k} \cdot \vec{r}}+\frac{e^{i k r}}{r} f(\Omega), \\
& \frac{d \sigma}{d \Omega}=|f(\Omega)|^{2}, \quad \sigma=\frac{4 \pi}{k^{2}} \sum_{\ell}(2 \ell+1) \sin ^{2} \delta_{\ell}, \quad \delta \approx-a k \\
& L_{ \pm}|\ell, m\rangle=\sqrt{\ell(\ell+1)-m(m \pm 1)}|\ell, m \pm 1\rangle, \\
& C_{m_{\ell}, m_{s} ; J M}^{\ell, s}=\left\langle\ell, s, J, M \mid \ell, s, m_{\ell}, m_{s}\right\rangle, \\
& \langle\tilde{\beta}, J, M| T_{q}^{k}\left|\beta, \ell, m_{\ell}\right\rangle=C_{q m_{\ell} ; J M}^{k \ell} \frac{\langle\tilde{\beta}, J|\left|T^{(k)}\right||\beta, \ell, J\rangle}{\sqrt{2 J+1}}, \\
& n=\frac{(2 s+1)}{(2 \pi)^{d}} \int_{k<k_{f}} d^{d} k, \quad d \text { dimensions }, \\
& \left\{\Psi_{s}(\vec{x}), \Psi_{s^{\prime}}^{\dagger}(\vec{y})\right\}=\delta^{3}(\vec{x}-\vec{y}) \delta_{s s^{\prime}}, \\
& \Psi_{s}^{\dagger}(\vec{r})=\frac{1}{\sqrt{V}} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}} a_{s}^{\dagger}(\vec{k}), \quad\left\{\Psi_{s}(\vec{x}), a_{\alpha}^{\dagger}\right\}=\phi_{\alpha, s}(\vec{x}) .
\end{aligned}
$$

1. A particle of mass \boldsymbol{m} and charge \boldsymbol{e} feels a strong constant electric field $\overrightarrow{\boldsymbol{E}}=\boldsymbol{E}_{0} \hat{\boldsymbol{x}}$. Additionally, the particle experiences a constant weak magnetic field $\overrightarrow{\boldsymbol{B}}=\boldsymbol{B}_{0} \hat{\boldsymbol{z}}$. The magnetic field strength is less than the electric field strength, $\boldsymbol{E}_{\mathbf{0}}>\boldsymbol{B}_{\mathbf{0}}$.
(a) (10 pts) Describe a reference frame where either $\overrightarrow{\boldsymbol{E}}$ or $\overrightarrow{\boldsymbol{B}}$ is zero. State the velocity (both magnitude and direction) of that frame, and describe the fields in that frame.
(b) Averaged over a sufficiently long time interval $\boldsymbol{\Delta}$ to avoid any oscillatory terms, answer these questions about the components of the average velocity $\left(\overline{\boldsymbol{v}}_{\boldsymbol{x}}(\boldsymbol{t}), \overline{\boldsymbol{v}}_{\boldsymbol{y}}(\boldsymbol{t}), \overline{\boldsymbol{v}}_{\boldsymbol{z}}(\boldsymbol{t})\right)$ at large times, $\boldsymbol{t} \gg \boldsymbol{\Delta} \boldsymbol{t}$. Assume the particle might has some original momentum with non-zero components in each direction. Circle the correct answers:
i. (5 pts) Which components average to zero? $\left[\boldsymbol{v}_{\boldsymbol{x}}, \boldsymbol{v}_{\boldsymbol{y}}, \boldsymbol{v}_{\boldsymbol{z}}\right]$
ii. (5 pts) Which components average to a constant? (but not necessarily zero) $\left[\boldsymbol{v}_{\boldsymbol{x}}, \boldsymbol{v}_{\boldsymbol{y}}, \boldsymbol{v}_{\boldsymbol{z}}\right]$
iii. (5 pts) Which components continue to accelerate over time? $\left[\boldsymbol{v}_{\boldsymbol{x}}, \boldsymbol{v}_{\boldsymbol{y}}, \boldsymbol{v}_{\boldsymbol{z}}\right]$

You might choose a gauge where the vector potential $\overrightarrow{\boldsymbol{A}}$ is pointed along the axis.

2. Consider a particle of mass $\boldsymbol{m}_{\mathbf{0}}$ confined to a two-dimensional harmonic oscillator,

$$
V(x, y)=\frac{1}{2} m \omega^{2}\left(r^{2}\right), \quad r=\sqrt{x^{2}+y^{2}}
$$

Consider solutions of the form,

$$
\psi_{n m}(x, y)=\phi_{n m}(r) e^{i m \phi}, \quad m=\text { an integer }
$$

(a) (10 pts) Write a one-dimensional differential equation (Schrödinger's equation) in terms of \boldsymbol{r} for $\boldsymbol{\phi}_{\boldsymbol{n m}}(\boldsymbol{r})$ assuming $\boldsymbol{\phi}_{\boldsymbol{n m}}$ is an eigenstate with energy $\boldsymbol{E}_{\boldsymbol{n m}}$. Here, \boldsymbol{n} denotes different eigenstates with the same \boldsymbol{m}.
(b) (10 pts) What are the eigen-energies? Also state the degeneracies of each level. (easier to work out in Cartesian basis)
(c) (5 pts) Consider the state (un-normalized)

$$
\begin{aligned}
& \psi_{N M}=\left(a_{x}^{\dagger}+i a_{y}^{\dagger}\right)^{M}\left(a_{x}^{\dagger} a_{x}^{\dagger}+a_{y}^{\dagger} a_{y}^{\dagger}\right)^{(N-M) / 2}|0\rangle, \quad M \geq 0 \\
& \psi_{N M}=\left(a_{x}^{\dagger}-i a_{y}^{\dagger}\right)^{|M|}\left(a_{x}^{\dagger} a_{x}^{\dagger}+a_{y}^{\dagger} a_{y}^{\dagger}\right)^{(N-M) / 2}|0\rangle, \quad M<0
\end{aligned}
$$

with energy $(\boldsymbol{N}+\mathbf{1}) \hbar \boldsymbol{\omega}$. Here, $\boldsymbol{a}_{\boldsymbol{x}}^{\dagger}$ and $\boldsymbol{a}_{\boldsymbol{y}}^{\dagger}$ are the raising operators in the Cartesian basis. Show that under rotations that $\boldsymbol{\psi}_{N M}$ behaves as $\boldsymbol{e}^{i M \phi}$. I.e., show that

$$
R(\Delta \phi) \psi_{N M}(r, \phi)=e^{i M \Delta \phi} \psi_{N M}(r, \phi)
$$

You may use the fact that $\boldsymbol{a}_{\boldsymbol{x}}^{\dagger}$ and $\boldsymbol{a}_{\boldsymbol{y}}^{\dagger}$ rotate amongst each other like \boldsymbol{x} and \boldsymbol{y}.
(d) (5 pts) For a given eigen-energy $(\boldsymbol{N}+\mathbf{1}) \hbar \boldsymbol{\omega}$, what values of \boldsymbol{M} are possible?

$$
\begin{aligned}
& \text { a) }\left[-\frac{\hbar^{2}}{2 m}\left(\partial r^{2}+\frac{1}{r}+\frac{1}{r^{2}} \partial_{\rho}^{2}\right)+V(r)\right] \psi=E \psi \\
& \left\{-\frac{\hbar^{2}}{2 m}\left(\partial r^{2}+\frac{1}{r} \partial_{r}\right)+\frac{1}{2} m \omega^{2} r^{2}+\frac{\hbar^{2} m^{2}}{2 m r^{2}}\right\} \varphi_{a m}=E \varphi_{r m} \\
& \text { b) } E_{n}=\left(n_{x}+n_{y}+1\right) \hbar w=(N+1) \hbar w, N=0,1,3 \cdots \\
& \begin{array}{l}
\operatorname{degen}(N)=N+1 \\
\text { c) }\left(a_{+}^{+}+i a_{y}^{+}\right)-\left(a_{x}^{+} \cos \varphi+a_{g} \sin \varphi+i\left(a_{y}^{+} \cos \varphi-a_{x}^{+} \sin \varphi\right)\right.
\end{array} \\
& =\left(a_{x}^{+}+i a_{y}^{-1}\right) e^{i \varphi} \\
& \left(a_{x}^{+}+i a_{b}^{+}\right)^{M} \sim\left(a_{x}^{+}+i a_{y}^{+}\right)^{N} e^{i M \varphi} \\
& \text { d) To mat ch degeneracy, parity } \\
& M=-N,-N+2,-N+4 \cdots N-2, N \\
& \text { on } b_{y} \text { inspecting form of } \mathcal{F}_{N M}
\end{aligned}
$$

3. (20 pts) Two distinguishable spinless particles of mass \boldsymbol{m} occupy the same $\boldsymbol{\ell}=\mathbf{1}$ eigenstate of a spherically symmetric potential. An spin-spin interaction is then applied,

$$
V_{\mathrm{ss}}=-\beta \vec{L}_{1} \cdot \vec{L}_{2}
$$

(a) (5 pts) What values of the total angular momentum might the system attain?
(b) (15 pts) What are the shifts of the energy due to $\boldsymbol{V}_{\boldsymbol{s} \boldsymbol{s}}$? Assume you needn't worry about mixing with other levels.

$$
\begin{aligned}
& a) 0,1,2=5 \\
& \text { b) } \overline{\bar{J}}=\vec{L}_{1}+\vec{L}_{2}, \quad \vec{L}_{1}-\vec{L}_{2}=\frac{1}{2}\left[\left(\left.\vec{F}\right|^{2}-\left.\vec{L}_{1}\right|^{2}-\vec{r}_{2}\right)^{2}\right] \\
& =\frac{1}{2}[j(j+1)-2 l(e+1)] \\
& \eta=1
\end{aligned}
$$

4. (20 pts) Two spinless particles (" 1 " and " 2 ") of mass \boldsymbol{m} occupy an $\boldsymbol{\ell}=\mathbf{1}$ eigenstate and an $\boldsymbol{\ell}=\mathbf{2}$ eigenstate of a spherically symmetric potential. A magnetic field with the following interaction is then applied,

$$
V_{\mathrm{b}}=-\mu_{1} \vec{B} \cdot \vec{L}_{1}-\mu_{2} \vec{B} \cdot \vec{L}_{2}
$$

(a) (5 pts) What values of the total angular momentum might the system attain?
(b) (15 pts) What are the shifts of the energy due to $\boldsymbol{V}_{\boldsymbol{b}}$? Assume you needn't worry about mixing with other levels.

$$
\begin{aligned}
\text { as }= & 1,2,3 \\
\text { b) } \Delta E= & -B \hbar\left\{\mu_{1} m_{1}+\mu_{2} m_{2}\right\} \\
& r a n \operatorname{sen}-\text { rom }-\mu_{1} B \hbar-2 \mu_{2} B \hbar
\end{aligned}
$$

$$
t_{0}+\mu_{1} \beta \hbar+2 \mu_{2} \beta \hbar
$$

