$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x e^{-x^{2} /\left(2 a^{2}\right)}=a \sqrt{2 \pi}, \\
& \boldsymbol{H}=i \hbar \partial_{t}, \overrightarrow{\boldsymbol{P}}=-i \hbar \boldsymbol{\nabla}, \\
& \sigma_{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right), \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right), \\
& U(t,-\infty)=1+\frac{-i}{\hbar} \int_{-\infty}^{t} d t^{\prime} V\left(t^{\prime}\right) U\left(t^{\prime},-\infty\right), \\
& \left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right),\left\langle p \mid p^{\prime}\right\rangle=\frac{1}{2 \pi \hbar} \delta\left(p-p^{\prime}\right), \\
& |p\rangle=\int d x|x\rangle e^{i p x / \hbar}, \quad|x\rangle=\int \frac{d p}{2 \pi \hbar}|p\rangle e^{-i p x / \hbar}, \\
& H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}=\hbar \omega\left(a^{\dagger} a+1 / 2\right), \\
& a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}} X-i \sqrt{\frac{1}{2 \hbar m \omega}} P, \\
& \psi_{0}(x)=\frac{1}{\left(\pi b^{2}\right)^{1 / 4}} e^{-x^{2} / 2 b^{2}}, \quad b^{2}=\frac{\hbar}{m \omega}, \\
& \rho(\vec{r}, t)=\psi^{*}\left(\vec{r}_{1}, t_{1}\right) \psi\left(\vec{r}_{2}, t_{2}\right) \\
& \vec{j}(\vec{r}, t)=\frac{-i \hbar}{2 m}\left(\psi^{*}(\vec{r}, t) \nabla \psi(\vec{r}, t)-\left(\nabla \psi^{*}(\vec{r}, t)\right) \psi(\vec{r}, t)\right) \\
& -\frac{e \vec{A}}{m c}|\psi(\vec{r}, t)|^{2} . \\
& H=\frac{(\vec{P}-e \vec{A} / c)^{2}}{2 m}+e \Phi, \\
& \text { For } V=\beta \delta(x-y): \quad-\frac{\hbar^{2}}{2 m}\left(\left.\frac{\partial}{\partial x} \psi(x)\right|_{y+\epsilon}-\left.\frac{\partial}{\partial x} \psi(x)\right|_{y-\epsilon}\right)=-\beta \psi(y) \text {, } \\
& \vec{E}=-\nabla \Phi-\frac{1}{c} \partial_{t} \vec{A}, \quad \vec{B}=\nabla \times \vec{A}, \\
& \omega_{\text {cyclotron }}=\frac{e B}{m c}, \\
& e^{A+B}=e^{A} e^{B} e^{-C / 2}, \quad \text { if }[A, B]=C, \text { and }[C, A]=[C, B]=0, \\
& Y_{0,0}=\frac{1}{\sqrt{4 \pi}}, \quad Y_{1,0}=\sqrt{\frac{3}{4 \pi}} \cos \theta, \quad Y_{1, \pm 1}=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \pm \phi}, \\
& Y_{2,0}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right), \quad Y_{2, \pm 1}=\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm i \phi}, \\
& \boldsymbol{Y}_{2, \pm 2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \phi}, \quad Y_{\ell-m}(\theta, \phi)=(-1)^{m} \boldsymbol{Y}_{\ell m}^{*}(\theta, \phi) .
\end{aligned}
$$

$$
\begin{aligned}
& |N\rangle=|n\rangle-\sum_{m \neq n}|m\rangle \frac{1}{\epsilon_{m}-\epsilon_{n}}\langle m| V|n\rangle+\cdots \\
& E_{N}=\epsilon_{n}+\langle n| V|n\rangle-\sum_{m \neq n} \frac{|\langle m| V| n\rangle\left.\right|^{2}}{\epsilon_{m}-\epsilon_{n}} \\
& j_{0}(x)=\frac{\sin x}{x}, n_{0}(x)=-\frac{\cos x}{x}, j_{1}(x)=\frac{\sin x}{x^{2}}-\frac{\cos x}{x}, n_{1}(x)=-\frac{\cos x}{x^{2}}-\frac{\sin x}{x} \\
& j_{2}(x)=\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin x-\frac{3}{x^{2}} \cos x, n_{2}(x)=-\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \cos x-\frac{3}{x^{2}} \sin x, \\
& \frac{d}{d t} P_{i \rightarrow n}(t)=\frac{2 \pi}{\hbar}\left|V_{n i}\right|^{2} \delta\left(E_{n}-E_{i}\right), \\
& \frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left|\int d^{3} r \mathcal{V}(r) e^{i\left(\vec{k}_{f}-\vec{k}_{i}\right) \cdot \vec{r}}\right|^{2}, \\
& \sigma=\frac{\left(2 S_{R}+1\right)}{\left(2 S_{1}+1\right)\left(2 S_{2}+1\right)} \frac{4 \pi}{k^{2}} \frac{\left(\hbar \Gamma_{R} / 2\right)^{2}}{\left(\epsilon_{k}-\epsilon_{r}\right)^{2}+\left(\hbar \Gamma_{R} / 2\right)^{2}}, \\
& \frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {single }} \tilde{S}(\vec{q}), \quad \tilde{S}(\vec{q})=\left|\sum_{\vec{a}} e^{i \vec{q} \cdot \vec{a}}\right|^{2}, \\
& e^{i \vec{k} \cdot \vec{r}}=\sum_{\ell}(2 \ell+1) i^{\ell} j_{\ell}(k r) P_{\ell}(\cos \theta), \\
& P_{\ell}(\cos \theta)=\sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell, m=0}(\theta, \phi), \\
& P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\left(3 x^{2}-1\right) / 3, \\
& f(\Omega) \equiv \sum_{\ell}(2 \ell+1) e^{i \delta_{\ell}} \sin \delta_{\ell} \frac{1}{k} P_{\ell}(\cos \theta) \\
& \left.\psi_{\vec{k}}(\vec{r})\right|_{R \rightarrow \infty}=e^{i \vec{k} \cdot \vec{r}}+\frac{e^{i k r}}{r} f(\Omega), \\
& \frac{d \sigma}{d \Omega}=|f(\Omega)|^{2}, \quad \sigma=\frac{4 \pi}{k^{2}} \sum_{\ell}(2 \ell+1) \sin ^{2} \delta_{\ell}, \quad \delta \approx-a k \\
& L_{ \pm}|\ell, m\rangle=\sqrt{\ell(\ell+1)-m(m \pm 1)}|\ell, m \pm 1\rangle, \\
& C_{m_{\ell}, m_{s} ; J M}^{\ell, s}=\left\langle\ell, s, J, M \mid \ell, s, m_{\ell}, m_{s}\right\rangle, \\
& \langle\tilde{\beta}, J, M| T_{q}^{k}\left|\beta, \ell, m_{\ell}\right\rangle=C_{q m_{\ell} ; J M}^{k \ell} \frac{\langle\tilde{\beta}, J|\left|T^{(k)}\right||\beta, \ell, J\rangle}{\sqrt{2 J+1}}, \\
& n=\frac{(2 s+1)}{(2 \pi)^{d}} \int_{k<k_{f}} d^{d} k, \quad d \text { dimensions, } \\
& \left\{\Psi_{s}(\vec{x}), \Psi_{s^{\prime}}^{\dagger}(\vec{y})\right\}=\delta^{3}(\vec{x}-\vec{y}) \delta_{s s^{\prime}}, \\
& \Psi_{s}^{\dagger}(\vec{r})=\frac{1}{\sqrt{V}} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}} a_{s}^{\dagger}(\vec{k}), \quad\left\{\Psi_{s}(\vec{x}), a_{\alpha}^{\dagger}\right\}=\phi_{\alpha, s}(\vec{x}) .
\end{aligned}
$$

\qquad

1. (20 pts) At $\boldsymbol{t}=\mathbf{0}$ an electron is in the $|\uparrow\rangle$ (up along the \boldsymbol{z} axis) state, which is represented by

$$
|\uparrow\rangle=\binom{1}{0} .
$$

The evolution is determined by the Hamiltonian,

$$
\boldsymbol{H}=\boldsymbol{A} \sigma_{z}+\boldsymbol{B} \sigma_{y}
$$

What is the probability the electron will be found in the $|\downarrow\rangle$ state as a function of time?

Solution:

$$
\begin{aligned}
e^{-i H t / \hbar} & =e^{-i \sqrt{A^{2}+B^{2}} \vec{\sigma} \cdot \hat{n} t / \hbar} \\
\vec{\sigma} \cdot \hat{n} & =\frac{1}{\sqrt{A^{2}+B^{2}}}\left(A \sigma_{z}+B \sigma_{y}\right), \\
e^{-i H t / \hbar} & =\cos \left(\sqrt{A^{2}+B^{2}} t / \hbar\right)-i \vec{\sigma} \cdot \hat{n} \sin \left(\sqrt{A^{2}+B^{2}} t / \hbar\right), \\
\langle\downarrow| e^{-i H t / \hbar}|\uparrow\rangle & =\frac{i B}{\sqrt{A^{2}+B^{2}}} \sin \left(\sqrt{A^{2}+B^{2}} t / \hbar\right), \\
\operatorname{Prob} & =\frac{B^{2}}{A^{2}+B^{2}} \sin ^{2}\left(\sqrt{A^{2}+B^{2}} t / \hbar\right)
\end{aligned}
$$

\qquad
2. (15 pts) In a one-dimensional world a particle of mass \boldsymbol{m} feels an attractive potential

$$
V(x)=\left\{\begin{array}{cc}
0, & x<-a \\
-V_{0}, & -a<x<a \\
0, & x>a
\end{array}\right.
$$

What is the minimum depth of the potential necessary for the number of bound states to be greater or equal to 2 .

Solution:

First excited state has one node and is odd, so choose something that goes as $\sin (\boldsymbol{q} \boldsymbol{x})$ for $\boldsymbol{x}<\boldsymbol{a}$. Next, wave function should barely turn over (slope $\rightarrow \mathbf{0}$ at $\boldsymbol{x}=\boldsymbol{a}$) so choose $\boldsymbol{q} \boldsymbol{a}=\boldsymbol{\pi} / \mathbf{2}$, and $\boldsymbol{E}=0$.

$$
\begin{aligned}
E & =0 \\
\frac{\hbar^{2} q^{2}}{2 m} & =V_{0} \\
q & =\frac{\pi}{2 a} \\
V_{0} & =\frac{\hbar^{2} \pi^{2}}{8 m a^{2}}
\end{aligned}
$$

\qquad
3. A particle of mass \boldsymbol{m} exists in a two-dimensional world and feels a harmonic-oscillator potential,

$$
V(x, y)=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right)
$$

(a) (5 pts) What are the eigenenergies?
(b) (10 pts) What are the degeneracies for each level?

Solution:

a) $(N+1) \hbar \omega, \quad N=0,1,2,3$
b) $N+1$

You needn't show your work - credit solely based on writing down correct answer.
4. (15 pts) A particle of mass \boldsymbol{m} and charge \boldsymbol{e} experiences a magnetic field

$$
\vec{B}=B \hat{z}
$$

and a weak $(\boldsymbol{E}<\boldsymbol{B})$ electric field

$$
\vec{E}=\frac{E}{\sqrt{2}}(\hat{x}+\hat{y})
$$

At $\boldsymbol{t}=\mathbf{0}$ the initial velocity is $\boldsymbol{v}_{\mathbf{0} \boldsymbol{x}} \hat{\boldsymbol{x}}+\boldsymbol{v}_{\mathbf{0} \boldsymbol{z}} \hat{\boldsymbol{z}}$. Averaging over a long time, what is the velocity (magnitude and direction) of the particle?
You needn't show your work as your grade will be fully determined on your answer alone.

Solution:

In the x-y plane, the magnitude of the drift velocity is E / B and direction is perpendicular to both \boldsymbol{E} and \boldsymbol{B} (i.e. it is parallel to $\overrightarrow{\boldsymbol{E}} \times \overrightarrow{\boldsymbol{B}}$). Velocity in \boldsymbol{z} direction is constant.

$$
\langle\vec{v}\rangle=v_{0 z} \hat{z}+\frac{E}{B} \frac{(\hat{x}-\hat{y})}{\sqrt{2}}
$$

\qquad
5. (10 pts) Evaluate the following matrix element

$$
\langle m|\left(a^{\dagger} a\right)^{K} a^{\dagger}|n\rangle
$$

where \boldsymbol{a}^{\dagger} and \boldsymbol{a} are creation and destruction operators respectively.

Solution:

$$
\begin{aligned}
\langle m|\left(a^{\dagger} a\right)^{K} a^{\dagger}|n\rangle & =m^{K}\langle m| a^{\dagger}|n\rangle \\
& =m^{K} \sqrt{n+1}\langle m \mid n+1\rangle \\
& =m^{K+1 / 2} \delta_{m, n+1}
\end{aligned}
$$

\qquad
6. (15pts) Consider a particle of mass \boldsymbol{m} incident on the following one-dimensional potential,

$$
V(x)=\left\{\begin{array}{cc}
\infty, & x<0 \\
V_{0}, & 0<x<a \\
0, & x>a
\end{array}\right.
$$

where $V_{0} \rightarrow \infty$.
Assume that the incoming wave is $e^{-i \boldsymbol{k} \boldsymbol{x}}$ and the reflected wave is of the form $-e^{2 \boldsymbol{i} \boldsymbol{\delta}} e^{i \boldsymbol{k} \boldsymbol{x}}$. Find $\boldsymbol{\delta}(\boldsymbol{k})$.

Solution:

$$
\begin{aligned}
\psi(x>a) & =\sin (k r+\delta), \\
\text { B.C. } \quad \sin (k a+\delta) & =0, \\
\delta & =-k a .
\end{aligned}
$$

