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1. (20 pts) At t = 0 an electron is in the | ↑〉 (up along the z axis) state, which is represented by

| ↑〉 =

(
1
0

)
.

The evolution is determined by the Hamiltonian,

H = Aσz +Bσy.

What is the probability the electron will be found in the | ↓〉 state as a function of time?

Solution:
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√
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√
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√
A2 +B2t/~),
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2. (15 pts) In a one-dimensional world a particle of mass m feels an attractive potential

V (x) =


0, x < −a
−V0, −a < x < a

0, x > a

What is the minimum depth of the potential necessary for the number of bound states to be
greater or equal to 2.

Solution:
First excited state has one node and is odd, so choose something that goes as sin(qx) for x < a.
Next, wave function should barely turn over (slope → 0 at x = a) so choose qa = π/2, and
E = 0.

E = 0,

~2q2

2m
= V0,

q =
π

2a
,

V0 =
~2π2

8ma2
.
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3. A particle of mass m exists in a two-dimensional world and feels a harmonic-oscillator potential,

V (x, y) =
1

2
mω2(x2 + y2).

(a) (5 pts) What are the eigenenergies?

(b) (10 pts) What are the degeneracies for each level?

Solution:
a) (N + 1)~ω, N = 0, 1, 2, 3
b) N + 1

You needn’t show your work – credit solely based on writing down correct answer.
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4. (15 pts) A particle of mass m and charge e experiences a magnetic field

~B = Bẑ,

and a weak (E < B) electric field

~E =
E
√

2
(x̂+ ŷ).

At t = 0 the initial velocity is v0xx̂ + v0zẑ. Averaging over a long time, what is the velocity
(magnitude and direction) of the particle?
You needn’t show your work as your grade will be fully determined on your answer alone.

Solution:
In the x-y plane, the magnitude of the drift velocity is E/B and direction is perpendicular to both

E and B (i.e. it is parallel to ~E × ~B). Velocity in z direction is constant.

〈~v〉 = v0zẑ +
E

B

(x̂− ŷ)
√

2
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5. (10 pts) Evaluate the following matrix element

〈m|(a†a)Ka†|n〉,

where a† and a are creation and destruction operators respectively.

Solution:

〈m|(a†a)Ka†|n〉 = mK〈m|a†|n〉
= mK

√
n+ 1〈m|n+ 1〉

= mK+1/2δm,n+1.
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6. (15pts) Consider a particle of mass m incident on the following one-dimensional potential,

V (x) =


∞, x < 0
V0, 0 < x < a
0, x > a

where V0 →∞.

Assume that the incoming wave is e−ikx and the reflected wave is of the form −e2iδeikx.
Find δ(k).

Solution:

ψ(x > a) = sin(kr + δ),

B.C. sin(ka+ δ) = 0,

δ = −ka.


