PHY 851 - QUANTUM MECHANICS MIDTERM I

September 25-28, 2020

- Submit your exam via GRADESCOPE. Be sure that no page contains responses for more than one problem. Having different parts $2 \mathrm{~b}, 2 \mathrm{c} \cdot \cdots$ of a given problem on a single page is fine. Individual problems can span multiple pages.
- Once the exam is opened, you are to upload your answer within six hours.
- This exam is open-book, open-notes, open-internet but closed-mouth. You are permitted to use mathematical software, e.g. Mathematica. You are not to communicate with any other individuals regarding the exam, during the exam.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x e^{-x^{2} /\left(2 a^{2}\right)}=a \sqrt{2 \pi}, \\
& \boldsymbol{H}=i \hbar \boldsymbol{\partial}_{t}, \overrightarrow{\boldsymbol{P}}=-i \hbar \boldsymbol{\nabla}, \\
& \sigma_{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right), \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right), \\
& U(t,-\infty)=1+\frac{-i}{\hbar} \int_{-\infty}^{t} d t^{\prime} V\left(t^{\prime}\right) U\left(t^{\prime},-\infty\right), \\
& \left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right),\left\langle p \mid p^{\prime}\right\rangle=\frac{1}{2 \pi \hbar} \delta\left(p-p^{\prime}\right), \\
& |p\rangle=\int d x|x\rangle e^{i p x / \hbar}, \quad|x\rangle=\int \frac{d p}{2 \pi \hbar}|p\rangle e^{-i p x / \hbar}, \\
& H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}=\hbar \omega\left(a^{\dagger} a+1 / 2\right), \\
& a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}} X-i \sqrt{\frac{1}{2 \hbar m \omega}} P, \\
& \psi_{0}(x)=\frac{1}{\left(\pi b^{2}\right)^{1 / 4}} e^{-x^{2} / 2 b^{2}}, \quad b^{2}=\frac{\hbar}{m \omega}, \\
& \rho(\vec{r}, t)=\psi^{*}\left(\vec{r}_{1}, t_{1}\right) \psi\left(\vec{r}_{2}, t_{2}\right) \\
& \vec{j}(\vec{r}, t)=\frac{-i \hbar}{2 m}\left(\psi^{*}(\vec{r}, t) \nabla \psi(\vec{r}, t)-\left(\nabla \psi^{*}(\vec{r}, t)\right) \psi(\vec{r}, t)\right) \\
& -\frac{e \vec{A}}{m c}|\psi(\vec{r}, t)|^{2} . \\
& H=\frac{(\overrightarrow{\boldsymbol{P}}-e \vec{A} / c)^{2}}{2 m}+e \Phi, \\
& \text { For } V=\beta \delta(x-y): \quad-\frac{\hbar^{2}}{2 m}\left(\left.\frac{\partial}{\partial x} \psi(x)\right|_{y+\epsilon}-\left.\frac{\partial}{\partial x} \psi(x)\right|_{y-\epsilon}\right)=-\beta \psi(y) \text {, } \\
& \vec{E}=-\nabla \Phi-\frac{1}{c} \partial_{t} \vec{A}, \quad \vec{B}=\nabla \times \vec{A}, \\
& \omega_{\text {cyclotron }}=\frac{e B}{m c}, \\
& e^{A+B}=e^{A} e^{B} e^{-C / 2}, \quad \text { if }[A, B]=C, \text { and }[C, A]=[C, B]=0, \\
& Y_{0,0}=\frac{1}{\sqrt{4 \pi}}, \quad Y_{1,0}=\sqrt{\frac{3}{4 \pi}} \cos \theta, \quad Y_{1, \pm 1}=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \pm \phi}, \\
& Y_{2,0}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right), \quad Y_{2, \pm 1}=\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm i \phi}, \\
& Y_{2, \pm 2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \phi}, \quad Y_{\ell-m}(\theta, \phi)=(-1)^{m} Y_{\ell m}^{*}(\theta, \phi) .
\end{aligned}
$$

$$
\begin{aligned}
& |N\rangle=|n\rangle-\sum_{m \neq n}|m\rangle \frac{1}{\epsilon_{m}-\epsilon_{n}}\langle m| V|n\rangle+\cdots \\
& \boldsymbol{E}_{N}=\epsilon_{n}+\langle n| V|n\rangle-\sum_{m \neq n} \frac{|\langle m| V| n\rangle\left.\right|^{2}}{\epsilon_{m}-\epsilon_{n}} \\
& j_{0}(x)=\frac{\sin x}{x}, n_{0}(x)=-\frac{\cos x}{x}, j_{1}(x)=\frac{\sin x}{x^{2}}-\frac{\cos x}{x}, n_{1}(x)=-\frac{\cos x}{x^{2}}-\frac{\sin x}{x} \\
& j_{2}(x)=\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin x-\frac{3}{x^{2}} \cos x, n_{2}(x)=-\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \cos x-\frac{3}{x^{2}} \sin x, \\
& \frac{d}{d t} P_{i \rightarrow n}(t)=\frac{2 \pi}{\hbar}\left|V_{n i}\right|^{2} \delta\left(E_{n}-E_{i}\right), \\
& \frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left|\int d^{3} r \mathcal{V}(r) e^{i\left(\vec{k}_{f}-\vec{k}_{i}\right) \cdot \vec{r}}\right|^{2}, \\
& \sigma=\frac{\left(2 S_{R}+1\right)}{\left(2 S_{1}+1\right)\left(2 S_{2}+1\right)} \frac{4 \pi}{k^{2}} \frac{\left(\hbar \Gamma_{R} / 2\right)^{2}}{\left(\epsilon_{k}-\epsilon_{r}\right)^{2}+\left(\hbar \Gamma_{R} / 2\right)^{2}}, \\
& \frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {single }} \tilde{S}(\vec{q}), \quad \tilde{S}(\vec{q})=\left|\sum_{\vec{a}} e^{i \vec{q} \cdot \vec{a}}\right|^{2}, \\
& e^{i \vec{k} \cdot \vec{r}}=\sum_{\ell}(2 \ell+1) i^{\ell} j_{\ell}(k r) P_{\ell}(\cos \theta), \\
& P_{\ell}(\cos \theta)=\sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell, m=0}(\theta, \phi), \\
& P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\left(3 x^{2}-1\right) / 3, \\
& f(\Omega) \equiv \sum_{\ell}(2 \ell+1) e^{i \delta_{\ell}} \sin \delta_{\ell} \frac{1}{k} P_{\ell}(\cos \theta) \\
& \left.\psi_{\vec{k}}(\vec{r})\right|_{R \rightarrow \infty}=e^{i \vec{k} \cdot \vec{r}}+\frac{e^{i k r}}{r} f(\Omega), \\
& \frac{d \sigma}{d \Omega}=|f(\Omega)|^{2}, \quad \sigma=\frac{4 \pi}{k^{2}} \sum_{\ell}(2 \ell+1) \sin ^{2} \delta_{\ell}, \quad \delta \approx-a k \\
& L_{ \pm}|\ell, m\rangle=\sqrt{\ell(\ell+1)-m(m \pm 1)}|\ell, m \pm 1\rangle, \\
& C_{m_{\ell}, m_{s} ; J M}^{\ell, s}=\left\langle\ell, s, J, M \mid \ell, s, m_{\ell}, m_{s}\right\rangle, \\
& \langle\tilde{\beta}, J, M| T_{q}^{k}\left|\beta, \ell, m_{\ell}\right\rangle=C_{q m_{\ell} ; J M}^{k \ell} \frac{\langle\tilde{\beta}, J|\left|T^{(k)}\right||\beta, \ell, J\rangle}{\sqrt{2 J+1}}, \\
& n=\frac{(2 s+1)}{(2 \pi)^{d}} \int_{k<k_{f}} d^{d} k, \quad d \text { dimensions }, \\
& \left\{\Psi_{s}(\vec{x}), \Psi_{s^{\prime}}^{\dagger}(\vec{y})\right\}=\delta^{3}(\vec{x}-\vec{y}) \delta_{s s^{\prime}}, \\
& \Psi_{s}^{\dagger}(\vec{r})=\frac{1}{\sqrt{V}} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}} a_{s}^{\dagger}(\vec{k}), \quad\left\{\Psi_{s}(\vec{x}), a_{\alpha}^{\dagger}\right\}=\phi_{\alpha, s}(\vec{x}) .
\end{aligned}
$$

1. An electron is in the $|\uparrow\rangle$ (up along the \boldsymbol{z} axis) state.
(a) (10 pts) What is the probability of finding it in the $|\uparrow\rangle$ state if observed after rotating the coordinate system by 90 degrees about the \boldsymbol{z} axis?
(b) (10 pts) If the rotation were instead 180 degrees about the \boldsymbol{x} axis, what would the probability of observing the $|\uparrow\rangle$ state be?

$$
P_{\text {ash }}=0
$$

2. (20 pts) Consider a two-state system, with the Hamiltonian,

$$
\boldsymbol{H}=\boldsymbol{A}+\boldsymbol{B} \vec{\sigma} \cdot \hat{n},
$$

where $\hat{\boldsymbol{n}}$ is a unit vector in the $\boldsymbol{x}-\boldsymbol{z}$ plane pointing 30 degrees from the \boldsymbol{z} axis.
At $\boldsymbol{t}=\mathbf{0}$, the state

$$
|\uparrow\rangle=\binom{1}{0}
$$

is occupied. Find the probability the state $|\downarrow\rangle$ is occupied as a function of time.

$$
\begin{aligned}
& e^{-i H t}=e^{-i A t / e^{-i B \vec{G} \cdot \hat{h} t / \hbar}} \\
&= e^{-i A t / \hbar}\{\cos (B t / \hbar)-i(\vec{\sigma} \cdot \hat{n}) \sin (B t / \hbar)\} \\
& \vec{\sigma} \cdot \hat{n}=\sqrt{\frac{3}{2}} \sigma_{z}+\frac{1}{2} \sigma_{x} \\
&\binom{0}{1}^{+} e^{-i H t}\binom{1}{v}=e^{-i A t / \hbar}\left(\frac{-i}{2} \sin B t / \hbar\right) \\
&\left.P_{\omega}\right)=\frac{1}{4} \sin ^{2} B t / \hbar
\end{aligned}
$$

3. (20 pts) A particle of mass \boldsymbol{m} is in the first excited state of a harmonic oscillator with characteristic frequency $\boldsymbol{\omega}$. The well suddenly dissolves. What is the differential probability, $\boldsymbol{d} \boldsymbol{N} / \boldsymbol{d} \boldsymbol{p}$, for observing the particle with momentum \boldsymbol{p} ?

$$
\begin{aligned}
& \mathbb{P}_{p}=\left|\left\langle p \mid \psi_{1}\right\rangle\right|^{2} \\
= & \left.\iint d x e^{-i p x / k} \psi_{1}(x)\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{0}(x)=\frac{1}{\left(\pi b^{2}\right)^{1 / 4}} e^{-x^{2} / 2 b^{2}}, \quad b^{2}=\frac{\hbar}{m \omega}, \\
& \psi_{1}(x)=\left(\sqrt{\frac{m w}{2 \hbar}} \quad x-i \sqrt{\frac{1}{2 m \hbar w}\left(-i \hbar \partial_{x}\right)}\right) \psi \\
& =\sqrt{2} \frac{x}{b} e^{-x^{2} / 2 b^{2}} \frac{1}{\left(\pi b^{2}\right)^{1 / 4}} \\
& \begin{aligned}
P_{p} & \left.=\frac{2}{\sqrt{\pi b^{3}}} \right\rvert\, \frac{1}{\sqrt{L}} \\
& =\frac{2}{\sqrt{\pi} b^{3} L}
\end{aligned} \\
& =\frac{2}{\sqrt{\pi b^{3} L}}\left(i \hbar \partial_{p} \int d x e^{-\frac{\left(x+\frac{i p}{\hbar} b^{2}\right)^{2}}{2 b^{2}}} e^{-\frac{p^{2} b^{2}}{2 \hbar^{2}}}\right)^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& P_{p}=\frac{4 \sqrt{\pi} b^{3} p^{2} e^{-\frac{p^{2} h^{2}}{\hbar^{2}}}}{L \hbar^{2}}=P_{r u b} \text { to so ito } \quad \text { a single state } \\
& \frac{d N}{d p}=P_{p} \cdot \frac{d N_{\text {stator }}}{d p}=P_{p} \cdot \frac{L}{2 \pi \hbar} \\
& =-\frac{2}{\sqrt{\pi}} \frac{b^{3} p^{2}}{\hbar^{3}} e^{-p^{2} b^{2} / \hbar^{2}} \\
& \text { where } \\
& b=\sqrt{\hbar / m w} \\
& \int p^{2} d p e^{-p^{2} b^{2} / \hbar^{2}} \\
& =\left(\frac{\hbar}{\sqrt{2} b}\right)^{3}(2 \pi)^{1 / 2}=\frac{\sqrt{\pi \hbar^{3}}}{2 b^{3}}
\end{aligned}
$$

4. (15 pts) Consider a particle of mass \boldsymbol{m} confined to two-dimensions which feels the potential,

$$
V(x, y)=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right)
$$

What are the energy levels and their degeneracies?

$$
\begin{aligned}
E & =\left(n_{x}+n_{y}+1\right) \hbar w \\
& =N \hbar w, \quad N=1,2,3
\end{aligned}
$$

$$
d(N)=N
$$

1
1
5. Consider a particle of mass \boldsymbol{m} approaching a positive potential step from the $\boldsymbol{x}=+\infty$ direction with wave number \boldsymbol{k}. The potential step is larger than the kinetic energy of the approaching particle, and has the form,

$$
V(x)=\left\{\begin{array}{cl}
\infty, & x<0 \\
V_{0}, & 0<x<a \\
0, & x>a
\end{array}\right.
$$

For $\boldsymbol{x}>\boldsymbol{a}$, the wave function has the form

$$
\psi(x)=e^{-i k x}-e^{2 i \delta(k)} e^{i k x}
$$

(a) (20 pts) Find the phase shift $\boldsymbol{\delta}(\boldsymbol{k})$.
(b) (5 pts) What is $\boldsymbol{\delta}(\boldsymbol{k})$ in the limit $\boldsymbol{V}_{\mathbf{0}} \rightarrow \boldsymbol{\infty}$?

$$
\text { (a) } y_{I}=A \sinh q x, \frac{\pi}{I}=\sin (k x+\delta)
$$

$$
q=\sqrt{2 m\left(V_{0}-E\right) / \hbar^{2}}, \quad k=\sqrt{2 m E / \hbar^{2}}
$$

$$
\begin{aligned}
q & =\sinh q a
\end{aligned}=\sin (k a+\delta)
$$

$$
\begin{aligned}
& q A \cosh q^{a}=k \cos (k a+\delta) \\
& \frac{1}{2} \tan h q^{a}=\frac{1}{k} \tan (k a+\delta)
\end{aligned}
$$

$$
\delta=-k a+\tan ^{-1} \frac{k}{q} \tanh q a
$$

$$
\begin{array}{r}
\text { (b) As } V_{0} \rightarrow \infty, g \rightarrow \infty \\
\delta=-k a \quad\left(\psi_{I}=\sin (k x-a)\right)
\end{array}
$$

