Noon Friday, December 11, until 5:00 PM Friday, December 18
This exam is worth 100 points.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x e^{-x^{2} /\left(2 a^{2}\right)}=a \sqrt{2 \pi}, \\
& H=i \hbar \partial_{t}, \vec{P}=-i \hbar \nabla, \\
& \sigma_{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right), \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right), \\
& U(t,-\infty)=1+\frac{-i}{\hbar} \int_{-\infty}^{t} d t^{\prime} V\left(t^{\prime}\right) U\left(t^{\prime},-\infty\right), \\
& \left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right),\left\langle p \mid p^{\prime}\right\rangle=\frac{1}{2 \pi \hbar} \delta\left(p-p^{\prime}\right), \\
& |p\rangle=\int d x|x\rangle e^{i p x / \hbar}, \quad|x\rangle=\int \frac{d p}{2 \pi \hbar}|p\rangle e^{-i p x / \hbar}, \\
& H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}=\hbar \omega\left(a^{\dagger} a+1 / 2\right), \\
& a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}} X-i \sqrt{\frac{1}{2 \hbar m \omega}} P, \\
& \psi_{0}(x)=\frac{1}{\left(\pi b^{2}\right)^{1 / 4}} e^{-x^{2} / 2 b^{2}}, \quad b^{2}=\frac{\hbar}{m \omega}, \\
& \rho(\vec{r}, t)=\psi^{*}\left(\vec{r}_{1}, t_{1}\right) \psi\left(\vec{r}_{2}, t_{2}\right) \\
& \vec{j}(\vec{r}, t)=\frac{-i \hbar}{2 m}\left(\psi^{*}(\vec{r}, t) \nabla \psi(\vec{r}, t)-\left(\nabla \psi^{*}(\vec{r}, t)\right) \psi(\vec{r}, t)\right) \\
& -\frac{e \vec{A}}{m c}|\psi(\vec{r}, t)|^{2} . \\
& H=\frac{(\vec{P}-e \vec{A} / c)^{2}}{2 m}+e \Phi, \\
& \text { For } V=\beta \delta(x-y): \quad-\frac{\hbar^{2}}{2 m}\left(\left.\frac{\partial}{\partial x} \psi(x)\right|_{y+\epsilon}-\left.\frac{\partial}{\partial x} \psi(x)\right|_{y-\epsilon}\right)=-\beta \psi(y), \\
& \vec{E}=-\nabla \Phi-\frac{1}{c} \partial_{t} \vec{A}, \quad \vec{B}=\nabla \times \vec{A}, \\
& \omega_{\text {cyclotron }}=\frac{e B}{m c}, \\
& e^{A+B}=e^{A} e^{B} e^{-C / 2}, \quad \text { if }[A, B]=C, \text { and }[C, A]=[C, B]=0, \\
& Y_{0,0}=\frac{1}{\sqrt{4 \pi}}, \quad Y_{1,0}=\sqrt{\frac{3}{4 \pi}} \cos \theta, \quad Y_{1, \pm 1}=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \pm \phi}, \\
& Y_{2,0}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right), \quad Y_{2, \pm 1}=\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm i \phi}, \\
& Y_{2, \pm 2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \phi}, \quad Y_{\ell-m}(\theta, \phi)=(-1)^{m} \boldsymbol{Y}_{\ell m}^{*}(\theta, \phi) .
\end{aligned}
$$

$$
\begin{aligned}
& |N\rangle=|n\rangle-\sum_{m \neq n}|m\rangle \frac{1}{\epsilon_{m}-\epsilon_{n}}\langle m| V|n\rangle+\cdots \\
& \boldsymbol{E}_{N}=\epsilon_{n}+\langle n| V|n\rangle-\sum_{m \neq n} \frac{|\langle m| V| n\rangle\left.\right|^{2}}{\epsilon_{m}-\epsilon_{n}} \\
& j_{0}(x)=\frac{\sin x}{x}, n_{0}(x)=-\frac{\cos x}{x}, j_{1}(x)=\frac{\sin x}{x^{2}}-\frac{\cos x}{x}, n_{1}(x)=-\frac{\cos x}{x^{2}}-\frac{\sin x}{x} \\
& j_{2}(x)=\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin x-\frac{3}{x^{2}} \cos x, n_{2}(x)=-\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \cos x-\frac{3}{x^{2}} \sin x, \\
& \frac{d}{d t} P_{i \rightarrow n}(t)=\frac{2 \pi}{\hbar}\left|V_{n i}\right|^{2} \delta\left(E_{n}-E_{i}\right), \\
& \frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left|\int d^{3} r \mathcal{V}(r) e^{i\left(\vec{k}_{f}-\vec{k}_{i}\right) \cdot \vec{r}}\right|^{2}, \\
& \sigma=\frac{\left(2 S_{R}+1\right)}{\left(2 S_{1}+1\right)\left(2 S_{2}+1\right)} \frac{4 \pi}{k^{2}} \frac{\left(\hbar \Gamma_{R} / 2\right)^{2}}{\left(\epsilon_{k}-\epsilon_{r}\right)^{2}+\left(\hbar \Gamma_{R} / 2\right)^{2}}, \\
& \frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {single }} \tilde{S}(\vec{q}), \quad \tilde{S}(\vec{q})=\left|\sum_{\vec{a}} e^{i \vec{q} \cdot \vec{a}}\right|^{2}, \\
& e^{i \vec{k} \cdot \vec{r}}=\sum_{\ell}(2 \ell+1) i^{\ell} j_{\ell}(k r) P_{\ell}(\cos \theta), \\
& P_{\ell}(\cos \theta)=\sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell, m=0}(\theta, \phi), \\
& P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\left(3 x^{2}-1\right) / 3, \\
& f(\Omega) \equiv \sum_{\ell}(2 \ell+1) e^{i \delta_{\ell}} \sin \delta_{\ell} \frac{1}{k} P_{\ell}(\cos \theta) \\
& \left.\psi_{\vec{k}}(\vec{r})\right|_{R \rightarrow \infty}=e^{i \vec{k} \cdot \vec{r}}+\frac{e^{i k r}}{r} f(\Omega), \\
& \frac{d \sigma}{d \Omega}=|f(\Omega)|^{2}, \quad \sigma=\frac{4 \pi}{k^{2}} \sum_{\ell}(2 \ell+1) \sin ^{2} \delta_{\ell}, \quad \delta \approx-a k \\
& L_{ \pm}|\ell, m\rangle=\sqrt{\ell(\ell+1)-m(m \pm 1)}|\ell, m \pm 1\rangle, \\
& C_{m_{\ell}, m_{s} ; J M}^{\ell, s}=\left\langle\ell, s, J, M \mid \ell, s, m_{\ell}, m_{s}\right\rangle, \\
& \langle\tilde{\beta}, J, M| T_{q}^{k}\left|\beta, \ell, m_{\ell}\right\rangle=C_{q m_{\ell} ; J M}^{k \ell} \frac{\langle\tilde{\beta}, J|\left|T^{(k)}\right||\beta, \ell, J\rangle}{\sqrt{2 J+1}}, \\
& n=\frac{(2 s+1)}{(2 \pi)^{d}} \int_{k<k_{f}} d^{d} k, \quad d \text { dimensions }, \\
& \left\{\Psi_{s}(\vec{x}), \Psi_{s^{\prime}}^{\dagger}(\vec{y})\right\}=\delta^{3}(\vec{x}-\vec{y}) \delta_{s s^{\prime}}, \\
& \Psi_{s}^{\dagger}(\vec{r})=\frac{1}{\sqrt{V}} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}} a_{s}^{\dagger}(\vec{k}), \quad\left\{\Psi_{s}(\vec{x}), a_{\alpha}^{\dagger}\right\}=\phi_{\alpha, s}(\vec{x}) .
\end{aligned}
$$

1. (5 pts) Consider three spin operators $\boldsymbol{S}_{\boldsymbol{x}}, \boldsymbol{S}_{\boldsymbol{y}}$ and $\boldsymbol{S}_{\boldsymbol{z}}$. Circle the operators that commute with S_{z}.

2. (5 pts) Consider two sets of spin operators, $\boldsymbol{S}_{\boldsymbol{x}}, \boldsymbol{S}_{\boldsymbol{y}}, \boldsymbol{S}_{\boldsymbol{z}}$ and $\boldsymbol{L}_{\boldsymbol{x}}, \boldsymbol{L}_{\boldsymbol{y}}, \boldsymbol{L}_{\boldsymbol{z}}$. You can assume $\overrightarrow{\boldsymbol{S}}$ operates on intrinsic spin and that $\overrightarrow{\boldsymbol{L}}$ describes orbital angular momentum. Circle the operators that commute with $\boldsymbol{S}_{\boldsymbol{z}}$.

3. (5 pts) Now consider the operators $\overrightarrow{\boldsymbol{J}} \equiv \overrightarrow{\boldsymbol{L}}+\boldsymbol{\boldsymbol { S }}$. Circle the operators that commute with $\boldsymbol{S}_{\boldsymbol{z}}$.

4. (A proton and a neutron are in the ground state of a harmonic oscillator. An interaction is added,

$$
V_{\mathrm{s.s.}}=-\alpha \vec{S}_{p} \cdot \vec{S}_{n}
$$

At $\boldsymbol{t}=\mathbf{0}$ the proton is in a $|\uparrow\rangle$ state and the neutron is in a $|\downarrow\rangle$ state, which we label as $|\uparrow, \downarrow\rangle$. With this labeling the first spin refers to the proton and the second to the neutron.
(a) (15 pts) In the basis above, express $\boldsymbol{V}_{\text {s.s. }}$ as a 4×4 matrix. Use a basis where the states are expressed as

$$
|\uparrow, \uparrow\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),|\uparrow, \downarrow\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),|\downarrow, \uparrow\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),|\downarrow, \downarrow\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

(b) (15 pts) Find the probability that the pair is each of the following states as a function of time for $\boldsymbol{t}>\mathbf{0}$.
i. $|\uparrow, \uparrow\rangle$
ii. $|\uparrow, \downarrow\rangle$ (this is the state at $\boldsymbol{t}=\mathbf{0}$)
iii. $|\downarrow, \uparrow\rangle$
iv. $|\downarrow, \downarrow\rangle$

$$
\begin{aligned}
\text { a) } V_{s s} & =-\frac{\alpha}{2}\left[\left(\vec{S}_{p}+\vec{S}_{n}\right)^{2}-\left|\vec{S}_{v}\right|^{2}-\left|\vec{S}_{n}\right|^{2}\right] \\
& =-\frac{\alpha}{2}\left[S(S+1)-\frac{3}{2}\right] \hbar^{2}
\end{aligned}
$$

$$
\left.\left.\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=1 S=1, M=1\right\rangle\left(\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right)=1 S=1, M=-1\right\rangle
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}[|S=1, M=0\rangle+|S=0, M=0\rangle] \\
& \left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\frac{1}{\sqrt{2}}[|S=1, M=0\rangle-|S=0, M=0\rangle]
\end{aligned}
$$

$$
V=
$$

$$
\begin{array}{cc}
0 & 0 \\
-\frac{\alpha \hbar^{2}}{2} & 0 \\
\frac{\alpha \hbar^{2}}{4} & 0 \\
0 & -\frac{1}{4} \alpha \hbar^{2}
\end{array}
$$

$$
\begin{gathered}
0 \\
0 \\
0 \\
-\frac{1}{4} \alpha \hbar^{2}
\end{gathered}
$$

(Extra work space for \#4)
$\psi(t)=e^{-i V_{c s} t / t}$
Look at central $2 \times 2 h^{2}$ sub matrix

$$
\begin{aligned}
& \widehat{V}=\left(\begin{array}{cc}
\alpha \hbar^{2} / 4 & -\alpha \hbar^{2} / 2 \\
-\frac{\alpha \hbar^{2}}{2} & \alpha \hbar^{2} / 4
\end{array}\right)=\frac{\alpha \hbar^{2}}{4}-\frac{\alpha \hbar^{2}}{2} \sigma_{x} \\
& e^{-i V t / \hbar}=e^{-i \frac{\alpha \hbar t}{4}} e^{-i \frac{\alpha \hbar t}{2} \sigma_{x}} \\
& =e^{-i \frac{\alpha \hbar t}{4}}\left(\operatorname{\omega s} \frac{\alpha \hbar t}{2}-i \sigma_{x} \sin \frac{\alpha \hbar t}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{\operatorname{mb}}(\eta, \downarrow)=\cos ^{2} \frac{\alpha \hbar t}{2} \\
& P_{\text {mb }}(\eta, \downarrow)=\sin ^{2} \frac{\alpha t t}{2} \\
& P_{\text {duh }}(d \downarrow)=0
\end{aligned}
$$

5. A beam of spinless particles of mass \boldsymbol{m} and kinetic energy \boldsymbol{E} is aimed at a spherically symmetric repulsive potential

$$
V(r)=\left\{\begin{array}{rr}
V_{0}, & r<a \\
0, & r>a
\end{array}\right.
$$

Assume $\boldsymbol{E}<\boldsymbol{V}_{\mathbf{0}}$.
(a) (10 pts) Find the $\boldsymbol{\ell}=\mathbf{0}$ phase shift as a function of the incoming wave number \boldsymbol{k}.
(b) (5 pts) What is the cross section as $\boldsymbol{k} \rightarrow \mathbf{0}$?
(c) (10 pts) What is the relative probability density for a particle in the wave packet to be at the origin compared to the probability with no potential? I.e. If ρ_{0} is the probability density at $\boldsymbol{r}=\mathbf{0}$ in the absence of the potential and $\boldsymbol{\rho}$ is the density with the potential, find $\boldsymbol{\rho} / \rho_{0}$.

$$
\begin{aligned}
& \text { a) } \psi_{I}=A \sinh q r, \quad g=\sqrt{\frac{2 m v_{0}}{\hbar^{2}}-k^{2}} \\
& \psi_{\mathbb{Z}}=\sin k r+\delta
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \psi_{\text {I }}= \sinh q a=\sin (k a+\delta) \\
& \text { ReC. } \quad \begin{aligned}
& \sinh g \\
& A \cosh (k a+\delta)
\end{aligned}
\end{aligned} \\
& \begin{aligned}
\psi_{I}= & \sin k r+\delta \\
\text { ReC. } \quad A \sinh q a & =\sin (k a+\delta) \\
q A \cosh q a & =k \cos (k a+\delta) \\
\frac{1}{q} \tanh q a & =\frac{1}{k} \tan (k a+\delta) \\
\delta=-k a & +\tan ^{-1}\left\{\frac{k}{q} \tanh q a\right\} \\
\text { b) } \sigma= & \frac{4 \pi}{k^{2}} \sin ^{2} \delta=\frac{4 \pi}{k^{2}}\left\{k \frac{\tan h q_{0} a}{q_{0}}-k a\right\}
\end{aligned} \\
& q A \cosh f^{a}-1 \tan (k a+\delta) \\
& =4 \pi a^{2}\left\{1-\frac{\tan h z_{i} a}{q_{5} a}\right\}^{2} \\
& \text { where } g_{0}=\sqrt{\frac{2 m v_{0}}{\hbar^{2}}} \\
& \text { c) } \rho=\left.A^{2} \frac{\sinh ^{2} q r}{\sin ^{2} k r}\right|_{r \rightarrow 0} \\
& =A^{2} \frac{q^{2}}{k^{2}}=\left(\frac{V_{0}}{E}-1\right) \cdot A^{2}=\left(\frac{V_{0}}{E}-1\right) \frac{\sin ^{2}\left(k_{a}+\delta\right)}{\sin ^{2} q^{a}}
\end{aligned}
$$

(Extra work space for \#5)

$$
\begin{aligned}
& \sin ^{2}(k a+f)=\sin ^{2}\left\{\tan ^{-1}\left[\frac{k}{q} \tanh q a\right]\right\} \\
& = \\
& =\frac{1}{1+\frac{k^{2}}{q^{2}} \tan ^{2} q a} \\
& =\frac{k^{2} / q^{2} \tan h^{2} q a}{1+\frac{k^{2}}{q^{2}} \tan ^{2} q a} \\
& =\frac{h^{2} \sinh ^{2} q a}{q^{2} \cosh ^{2} q a+k^{2} \sin h^{2} q a}=\frac{\rho}{\rho_{0}}
\end{aligned}
$$

6. A particle of mass \boldsymbol{m} moves in a one-dimensional attractive potential

$$
V(x)=-V_{0} \exp \left(-x^{2} / 2 a^{2}\right)
$$

Use a gaussian form for a trial wave function,

$$
\langle x \mid b\rangle=\psi_{b}(x)=\frac{1}{\left(\pi b^{2}\right)^{1 / 4}} e^{-x^{2} / 2 b^{2}}
$$

where \boldsymbol{b} is the variational parameter.
(a) (10 pts) What is $\langle\boldsymbol{b}| \boldsymbol{K} \boldsymbol{E}|\boldsymbol{b}\rangle$? -the expectation of the kinetic energy.
(b) (10 pts) What is $\langle\boldsymbol{b}| \boldsymbol{V}|\boldsymbol{b}\rangle$? -the expectation of the potential energy.
(c) (10 pts) Find an expression that when solved for \boldsymbol{b} and then plugged into (a) and (b) provides an estimate of the energy. This expression can be a polynomial that needs to be solved for \boldsymbol{b}. (No credit will be given for expressions that are dimensionally inconsistent)
(Extra work space for \#6)
6)(c) $\int e^{-x^{2} / 2 b^{2}}-\partial x^{2} e^{-x^{2} / 2 b^{2}} d x$

$$
\begin{aligned}
& =1 \int e^{-x^{1} / 2 b^{2}} \frac{\theta}{\partial x} \frac{x}{b^{2}} e^{-x^{2} / 2 h^{2}} 1 / \sqrt{\pi h^{2}} \\
& =\int e^{-x^{2} / b^{2}} \frac{x^{2}}{b^{4}} \frac{1}{\sqrt{\pi b^{2}}} d x \\
& =\frac{1}{2 b^{2}} \quad\langle\mid-E\rangle=\frac{\hbar^{2}}{4 m b^{2}}
\end{aligned}
$$

(b)
c

$$
\begin{array}{ll}
\frac{\partial V}{\partial b}=+\sqrt{2} V_{0} \frac{a b}{\left(2 a^{2}+b^{2}\right)^{3 / 2}} & \frac{\partial K E}{\partial b}=\frac{-\hbar^{2}}{2 m b^{3}} \\
\hbar^{4} & b^{2}=\alpha a^{2}
\end{array}
$$

$$
\frac{2 V_{0}^{2} a^{2} b^{2}}{\left(2 a^{2}+b^{2}\right)^{3}}=\frac{\hbar^{4}}{4 m^{2} b^{6}}, \frac{b^{2}}{\left(2 a^{2}+b^{2}\right)^{3}}=\frac{\alpha a^{2}}{b^{6}}
$$

$$
\begin{aligned}
& \left(2 a^{2}+b\right. \\
& \alpha=\frac{\hbar^{4}}{8 m^{2} a} \frac{1}{V_{0}^{2}}
\end{aligned}
$$

$$
\begin{gathered}
\frac{b^{2}}{\left(2 a^{2}+b^{2}\right)}=\frac{\alpha a^{2}}{b^{6}}, b^{8}-\alpha a^{2}\left(2 a^{2}+b^{2}\right)^{3}=0 \\
A_{4} b^{8}+A_{3} b^{6}+A_{2} b^{4}+A_{1} b^{2}+A_{0}=0 \\
A_{4}=1, A_{3}=-\alpha a^{2}, A_{2}=-6 a^{-1} \alpha \\
A_{1}=-12 a^{6} \alpha, A_{0}=-8 a^{8} \alpha \\
\alpha \equiv \frac{\hbar^{4}}{8 m^{2} a^{4}} \frac{1}{V_{0}^{2}}
\end{gathered}
$$

Quantic equation

