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FINAL EXAM,
PHYSICS 851, FALL 2019
Noon Friday, December 11, until 5:00 PM Friday, December 18
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1. (5 pts) Consider three spin operators Sx, Sy and Sz. Circle the operators that commute with
Sz.

• Sx
• Sz
• S2

x

• S2
z

• S2
x + S2

y + S2
z

2. (5 pts) Consider two sets of spin operators, Sx, Sy, Sz and Lx, Ly, Lz. You can assume ~S

operates on intrinsic spin and that ~L describes orbital angular momentum. Circle the operators
that commute with Sz.

• Lx
• Lz
• L2

x

• L2
z

• L2
x + L2

y + L2
z

3. (5 pts) Now consider the operators ~J ≡ ~L+ ~S. Circle the operators that commute with Sz.

• Jx
• Jz
• J2

x

• J2
z

• J2
x + J2

y + J2
z
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4. (A proton and a neutron are in the ground state of a harmonic oscillator. An interaction is added,

Vs.s. = −α~Sp · ~Sn

At t = 0 the proton is in a | ↑〉 state and the neutron is in a | ↓〉 state, which we label as | ↑, ↓〉.
With this labeling the first spin refers to the proton and the second to the neutron.

(a) (15 pts) In the basis above, express Vs.s. as a 4 × 4 matrix. Use a basis where the states
are expressed as

| ↑, ↑〉 =


1
0
0
0

 , | ↑, ↓〉 =


0
1
0
0

 , | ↓, ↑〉 =


0
0
1
0

 , | ↓, ↓〉 =


0
0
0
1

 .
(b) (15 pts) Find the probability that the pair is each of the following states as a function of

time for t > 0.

i. | ↑, ↑〉
ii. | ↑, ↓〉 (this is the state at t = 0)

iii. | ↓, ↑〉
iv. | ↓, ↓〉
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(Extra work space for #4)
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5. A beam of spinless particles of mass m and kinetic energy E is aimed at a spherically symmetric
repulsive potential

V (r) =

{
V0, r < a
0, r > a

Assume E < V0.

(a) (10 pts) Find the ` = 0 phase shift as a function of the incoming wave number k.

(b) (5 pts) What is the cross section as k→ 0?

(c) (10 pts) What is the relative probability density for a particle in the wave packet to be at the
origin compared to the probability with no potential? I.e. If ρ0 is the probability density at
r = 0 in the absence of the potential and ρ is the density with the potential, find ρ/ρ0.
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6. A particle of mass m moves in a one-dimensional attractive potential

V (x) = −V0 exp(−x2/2a2).

Use a gaussian form for a trial wave function,

〈x|b〉 = ψb(x) =
1

(πb2)1/4
e−x

2/2b2,

where b is the variational parameter.

(a) (10 pts) What is 〈b|KE|b〉? –the expectation of the kinetic energy.

(b) (10 pts) What is 〈b|V |b〉? –the expectation of the potential energy.

(c) (10 pts) Find an expression that when solved for b and then plugged into (a) and (b) provides
an estimate of the energy. This expression can be a polynomial that needs to be solved for
b. (No credit will be given for expressions that are dimensionally inconsistent)
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(Extra work space for #6)


