Thursday, December 12, 7:45-9:45 AM
This exam is worth 150 points, but graded on a scale of 135 points.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x e^{-x^{2} / 2}=\sqrt{2 \pi}, \\
& H=i \hbar \partial_{t}, \vec{P}=-i \hbar \nabla, \\
& \sigma_{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right), \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right), \\
& U(t,-\infty)=1+\frac{-i}{\hbar} \int_{-\infty}^{t} d t^{\prime} V\left(t^{\prime}\right) U\left(t^{\prime},-\infty\right), \\
& \left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right),\left\langle p \mid p^{\prime}\right\rangle=\frac{1}{2 \pi \hbar} \delta\left(p-p^{\prime}\right), \\
& |p\rangle=\int d x|x\rangle e^{i p x / \hbar}, \quad|x\rangle=\int \frac{d p}{2 \pi \hbar}|p\rangle e^{-i p x / \hbar}, \\
& H=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}=\hbar \omega\left(a^{\dagger} a+1 / 2\right), \\
& a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}} X-i \sqrt{\frac{1}{2 \hbar m \omega}} P, \\
& \psi_{0}(x)=\frac{1}{\left(\pi b^{2}\right)^{1 / 4}} e^{-x^{2} / 2 b^{2}}, \quad b^{2}=\frac{\hbar}{m \omega}, \\
& \rho(\vec{r}, t)=\psi^{*}\left(\vec{r}_{1}, t_{1}\right) \psi\left(\vec{r}_{2}, t_{2}\right) \\
& \vec{j}(\vec{r}, t)=\frac{-i \hbar}{2 m}\left(\psi^{*}(\vec{r}, t) \nabla \psi(\vec{r}, t)-\left(\nabla \psi^{*}(\vec{r}, t)\right) \psi(\vec{r}, t)\right) \\
& -\frac{e \vec{A}}{m c}|\psi(\vec{r}, t)|^{2} . \\
& H=\frac{(\overrightarrow{\boldsymbol{P}}-e \vec{A} / c)^{2}}{2 m}+e \Phi, \\
& \text { For } V=\beta \boldsymbol{\delta}(x-y), \\
& -\frac{\hbar^{2}}{2 m}\left(\left.\frac{\partial}{\partial x} \psi(x)\right|_{y+\epsilon}-\left.\frac{\partial}{\partial x} \psi(x)\right|_{y-\epsilon}\right)=-\beta \psi(y), \\
& \vec{E}=-\nabla \Phi-\frac{1}{c} \partial t \vec{A}, \quad \vec{B}=\nabla \times \vec{A}, \\
& \omega_{\text {cyclotron }}=\frac{e B}{m c}, \\
& e^{A+B}=e^{A} e^{B} e^{-C / 2}, \quad \text { if }[A, B]=C, \text { and }[C, A]=[C, B]=0, \\
& Y_{0,0}=\frac{1}{\sqrt{4 \pi}} \\
& Y_{1,0}=\sqrt{\frac{3}{4 \pi}} \cos \theta \\
& Y_{1, \pm 1}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \pm \phi},
\end{aligned}
$$

$$
\begin{aligned}
& |N\rangle=|n\rangle-\sum_{m \neq n}|m\rangle \frac{1}{\epsilon_{m}-\epsilon_{n}}\langle m| V|n\rangle+\cdots \\
& E_{N}=\epsilon_{n}+\langle n| V|n\rangle-\sum_{m \neq n} \frac{|\langle m| V| n\rangle\left.\right|^{2}}{\epsilon_{m}-\epsilon_{n}} \\
& j_{0}(x)=\frac{\sin x}{x}, n_{0}(x)=-\frac{\cos x}{x} \\
& j_{1}(x)=\frac{\sin x}{x^{2}}-\frac{\cos x}{x}, n_{1}(x)=-\frac{\cos x}{x^{2}}-\frac{\sin x}{x} \\
& j_{2}(x)=\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin x-\frac{3}{x^{2}} \cos x, n_{2}(x)=-\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \cos x-\frac{3}{x^{2}} \sin x, \\
& \frac{d}{d t} P_{i \rightarrow n}(t)=\frac{2 \pi}{\hbar}\left|V_{n i}\right|^{2} \delta\left(E_{n}-E_{i}\right), \\
& \frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left|\int d^{3} r \mathcal{V}(r) e^{i\left(\vec{k}_{f}-\vec{k}_{i}\right) \cdot \vec{r}}\right|^{2}, \\
& \sigma=\frac{\left(2 S_{R}+1\right)}{\left(2 S_{1}+1\right)\left(2 S_{2}+1\right)} \frac{4 \pi}{k^{2}} \frac{\left(\hbar \Gamma_{R} / 2\right)^{2}}{\left(\epsilon_{k}-\epsilon_{r}\right)^{2}+\left(\hbar \Gamma_{R} / 2\right)^{2}}, \\
& \frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {single }} \tilde{S}(\vec{q}), \quad \tilde{S}(\vec{q})=\left|\sum_{\delta \vec{a}} e^{i \vec{q} \cdot \delta \vec{a}}\right|^{2}, \\
& e^{i \vec{k} \cdot \vec{r}}=\sum_{\ell}(2 \ell+1) i^{\ell} j_{\ell}(k r) P_{\ell}(\cos \theta), \\
& P_{\ell}(\cos \theta)=\sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell, m=0}(\theta, \phi), \\
& P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\left(3 x^{2}-1\right) / 3, \\
& f(\Omega) \equiv \sum_{\ell}(2 \ell+1) e^{i \delta_{\ell}} \sin \delta_{\ell} \frac{1}{k} P_{\ell}(\cos \theta) \\
& \left.\psi_{\vec{k}}(\vec{r})\right|_{R \rightarrow \infty}=e^{i \vec{k} \cdot \vec{r}}+\frac{e^{i k r}}{r} f(\Omega), \\
& \frac{d \sigma}{d \Omega}=|f(\Omega)|^{2}, \\
& \sigma=\frac{4 \pi}{k^{2}} \sum_{\ell}(2 \ell+1) \sin ^{2} \delta_{\ell}, \\
& \int_{-\infty}^{\infty} d x e^{-x^{2} / 2}=\sqrt{2 \pi}, \\
& L_{ \pm}|\ell, m\rangle=\sqrt{\ell(\ell+1)-m(m \pm 1)}|\ell, m \pm 1\rangle .
\end{aligned}
$$

1. A neutron and proton occupy the ground state of a harmonic oscillator. The particles then feel two additional sources of interaction. First, they have a spin-spin interaction,

$$
V_{\mathrm{s} . \mathrm{s} .}=\alpha \vec{S}^{(\mathrm{n})} \cdot \vec{S}^{(\mathrm{p})}
$$

and secondly, they experience an external magnetic field

$$
V_{B}=-\left(\mu_{n} \vec{S}^{(\mathrm{n})}+\mu_{p} \vec{S}^{(\mathrm{p})}\right) \cdot \vec{B}
$$

Letting \boldsymbol{J} and \boldsymbol{M} reference the total angular momentum and its projection, and letting $\boldsymbol{m}_{\boldsymbol{n}}$ and $\boldsymbol{m}_{\boldsymbol{s}}$ reference the projections of the neutron and protons spins,
(a) (10 pts) circle the operators that commute with the Hamiltonian,

- The magnitude of the total angular momentum, $|\vec{J}|^{2}$.
- J_{z}
- $S_{z}^{(n)}$
- $S_{z}^{(p)}$
- $\left|\overrightarrow{\boldsymbol{S}}^{(p)}\right|^{2}$
(b) (10 pts) In the $\boldsymbol{J}, \boldsymbol{M}$ basis,

$$
\begin{aligned}
& |J=1, M=1\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),|J=1, M=-1\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
& |J=1, M=0\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),|J=0, M=0\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

write the Hamiltonian as a 4×4 matrix.
(c) $(5 \mathrm{pts})$ Find the eigen-energies of the Hamiltonian.
(Extra work space for \#1)
(Extra work space for \#1)
2. A particle of mass \boldsymbol{m} scatters off a target with a spherically symmetric potential,

$$
V(r)=V_{0} \Theta(R-r)
$$

(a) (10 pts) Find the $\boldsymbol{\ell}=\mathbf{0}$ phase shift as a function of the momentum \boldsymbol{p}, where the energy is less than $\boldsymbol{V}_{\mathbf{0}}$.
(b) (5 pts) What is the cross-section in the limit that $\boldsymbol{p} \boldsymbol{0}$?
(Extra work space for $\# 2$)
3. (15 pts) A particle is in the ground state of a two-level system where the Hamiltonian is

$$
H_{0}=V_{0} \sigma_{z}
$$

An interaction is then added,

$$
V(t)=\Theta(t) \beta \sigma_{x}
$$

What is the expectation of $\boldsymbol{\sigma}_{\boldsymbol{z}}$ as a function of time?
(Extra work space for \#3)
4. In one dimension, a particle of type \boldsymbol{a} and mass \boldsymbol{m} is in the ground state of an attractive potential

$$
V_{0}(x)=-\beta \delta(x)
$$

A perturbative potential is added,

$$
V_{a b}=\alpha \cos (\omega t)
$$

where $\boldsymbol{\alpha}$ is small and $\hbar \boldsymbol{\omega}$ is larger than the binding energy. This converts the particle to a type \boldsymbol{b} particle, which has the same mass \boldsymbol{m} but does not feel the effects of $\boldsymbol{V}_{\mathbf{0}}$.
(a) (10 pts) What is the binding energy of the \boldsymbol{a} particle?
(b) (20 pts) What is the decay rate?
5. (20 pts) The cross section for scattering of a particle with momentum $\hbar \boldsymbol{k}$ off a single target is

$$
\frac{d \sigma}{d \Omega}=\alpha\left(\cos ^{2} \theta+1 / 5\right)
$$

Now, two targets are placed a distance \boldsymbol{a} apart, separated along the \boldsymbol{z} axis (the same axis as the incident beam moves). At what scattering angles, $\boldsymbol{\theta}$, does the differential cross section, $\boldsymbol{d} \boldsymbol{\sigma} / \boldsymbol{d} \boldsymbol{\Omega}$, vanish?
(Extra work space for \#5)
6. (20 pts) A particle of mass \boldsymbol{m} is in an attractive Coulomb potential, $\boldsymbol{V}=-\boldsymbol{e}^{2} / \boldsymbol{r}$. Using a Gaussian form,

$$
\psi=e^{-r^{2} / 2 a^{2}}
$$

as a trial form for the ground state wave function. Provide a variational estimate (upper-bound) for the ground state binding energy.
(Extra work space for $\# 6$)
7. A positively charged particle of mass \boldsymbol{m} and charge \boldsymbol{e} is placed in a region with uniform magnetic field \boldsymbol{B} along the \boldsymbol{z} axis.
(a) (5 pts) Write the vector potential that describes the magnetic field such that $\overrightarrow{\boldsymbol{A}}$ is in the $\hat{\boldsymbol{y}}$ direction.
(b) (5 pts) What is the lowest eigen-energy?
(c) (5 pts) What is a general form for all the eigen-energies?
(d) (10 pts) A uniform electric field, $\boldsymbol{E}<\boldsymbol{B}$, is then added in the \boldsymbol{x} direction. If the particle is initially at $\boldsymbol{x}=\boldsymbol{y}=\mathbf{0}$ at time $\boldsymbol{t}=\mathbf{0}$ and if the initial velocity is small, find its average velocity after a long time \boldsymbol{t}. By "average", ignore any oscillatory forms to its position vs time. For full credit, derive the answer, for half credit, just write it down.
(Extra work space for $\# 7$)

