1. Consider the attractive potential,

$$
V(x)=\left\{\begin{array}{cc}
-V_{0}, & -a<x<a \\
0, & |x|>a
\end{array}\right.
$$

where V_{0} is a positive constant.
(a) Solve for the binding energy, B, of the ground state for a particle of mass m. You can leave expression as transcendental equation.
(b) Find expression for B in limit $V_{0} \gg \hbar^{2} / m a^{2}$.
(c) What is the minimum value of V_{0} such that there will be multiple bound states?

Solution: a)

$$
\begin{aligned}
\psi(x) & =\left\{\begin{aligned}
\cos (k x), & |x|<a \\
A \exp (-q|x|), & |x|>a
\end{aligned}\right. \\
q^{2} & =2 m B / \hbar^{2}, \quad k^{2}=2 m V_{0} / \hbar^{2}-q^{2}, \\
\cos (k a) & =A \exp (-q a), \\
-k \sin (k a) & =-q A \exp (-q a), \\
k \tan (k a) & =q, \\
\sqrt{2 m\left(V_{0}-B\right)} \tan \left[\sqrt{2 m\left(V_{0}-B\right)} a / \hbar^{2}\right] & =\sqrt{2 m B} .
\end{aligned}
$$

In that limit, it becomes an infinite square well,

$$
\begin{aligned}
k a & =\pi / 2 \\
B & =-V_{0}+\frac{\hbar^{2} k^{2}}{2 m}=-V_{0}+\frac{\hbar^{2} \pi^{2}}{8 m^{2}}
\end{aligned}
$$

c) solution should be

$$
\psi(x)=\left\{\begin{array}{rr}
\sin (k x), & |x|<a \\
A \exp (-q|x|), & |x|>a
\end{array}\right.
$$

BC are

$$
\begin{aligned}
\sin (k a) & =A e^{-q a} \\
k \cos (k a) & =-q A e^{-q a}
\end{aligned}
$$

Set $q=0$ to find limit,

$$
\frac{1}{k} \tan (k a)=-\frac{1}{q} .
$$

The r.h.s. must be infinite, so $k a=\pi / 2$, and

$$
B=\frac{\hbar^{2} \pi^{2}}{8 m^{2}}
$$

2. A particle of mass m moves in the positive x direction and is incident on a potential step,

$$
V(x)=\left\{\begin{array}{rr}
0, & x<0 \\
-V_{0}, & x>0
\end{array}\right.
$$

where V_{0} is a positive constant. Find the probability the particle is reflected by the step.
3. A particle of mass m is in the ground state of a harmonic oscillator,

$$
V(x, t<0)=\frac{1}{2} m \omega^{2} x^{2}
$$

At a time $t=0$, the potential is shifted suddenly to

$$
V(x, t>0)=\frac{1}{2} m \omega^{2}(x-a)^{2}
$$

What is the probability of finding the particle in the ground state of the new potential?

$$
\begin{aligned}
\psi_{0}(x) & =\frac{1}{\left(\pi b^{2}\right)^{1 / 4}} e^{-x^{2} / 2 b^{2}} \frac{1}{2} m \omega^{2} b^{2} \\
b^{2} & =\frac{\hbar}{2 m \omega}, \\
\psi_{1}(x) & =\frac{1}{\left(\pi b^{2}\right)^{1 / 4}} e^{-(x-a)^{2} / 2 b^{2}}, \\
\left\langle\psi_{1} \mid \psi_{0}\right\rangle & =\frac{1}{\left.\sqrt{(} \pi b^{2}\right)} \int d x e^{-\left(x^{2}+(x-a)^{2}\right) / 2 b^{2}} \\
& =\frac{1}{\sqrt{\left(\pi b^{2}\right)}} \int d x e^{-(x-a / 2)^{2} / b^{2}} e^{-a^{2} / 4 b^{2}} \\
& =e^{-a^{2} / 4 b^{2}}
\end{aligned}
$$

4. A particle of mass m and momentum p moves in the positive x direction and is incident on a potential step,

$$
V(x)=\left\{\begin{array}{rr}
0, & x<0 \\
V_{0}, & x>0
\end{array}\right.
$$

where V_{0} is a positive constant. Find the probability the particle is reflected by the step as a function of the momentum p.
5. A particle of mass m is in the ground state of a one-dimensional infinite square well.

$$
V(x, t<0)=\left\{\begin{array}{cc}
0, & 0<x<L \\
\infty, & \text { otherwise }
\end{array}\right.
$$

At a time $t=0$, the potential suddenly disappears. What is the probability density $d N / d p$ that the particle leaves with momentum p ? Note that the probability density should be normalize so that $\int d p d N / d p=1$.
6. A massless, $E=c p$, particle moves in an infinite one-dimensional potential well. The energy states as determined by the boundary equations are:

$$
E_{n}=n \hbar \omega_{0}, n=1,2 \cdots
$$

The system is heated to a temperature T with a single particle in the well. What is the average energy?

Solution:

$$
\begin{aligned}
\langle E\rangle & =\frac{\sum_{n=1}^{\infty} n \hbar \omega_{0} e^{-n \hbar \omega_{0} / T}}{\sum_{n=1}^{\infty} e^{-n \hbar \hbar_{0} \omega / T}} \\
& =\frac{-\partial_{\beta} Z(\beta)}{Z(\beta)}, \quad \beta \equiv 1 / T \\
Z(\beta) & =e^{-\beta \hbar \omega_{0}} \sum_{n=0}^{\infty} x^{n}, \quad x \equiv e^{-\beta \hbar \omega_{0}} \\
& =e^{-\beta \hbar \omega_{0}} \frac{1}{1-x}=e^{-\beta \hbar \omega_{0}} \frac{1}{1-e^{-\beta \hbar \omega_{0}}}, \\
\langle E\rangle & =\hbar \omega_{0}+\hbar \omega_{0} \frac{e^{-\beta \hbar \omega_{0}}}{1-e^{-\beta \hbar \omega_{0}}} .
\end{aligned}
$$

7. The ground state energy of an electron in a Coulomb potential well of a hydrogen atom is -13.6 eV . What is the energy of a μ^{-}bound to an α particle? Assume the muon is non-relativstic and the that the binding energy is purely due to Coulomb.
The alpha particle is an ionized He-4 nucleus with charge +2 . The mass of a muon is $M_{\mu}=105$ MeV / c^{2}, which is 207 times more massive than that of an electron, $M_{e}=0.511$. The mass of an α particle is $M_{\alpha}=3727 \mathrm{MeV} / c^{2}$ and the mass of a proton or neutron is $M_{n}=939 \mathrm{MeV}$.

Solution:

$$
E=-\frac{Z^{2} e^{4} M_{\mathrm{red}}}{2 \hbar^{2}}
$$

where M_{red} is the reduced mass, $M_{\mathrm{red}}=M_{\alpha} M_{e} /\left(M_{\alpha}+M_{e}\right)$.

$$
\begin{array}{rlr}
E & = & -\frac{4\left(M_{\alpha} M_{\mu}\right)\left(M_{p}+M_{e}\right)}{\left(M_{\alpha}+M_{\mu}\right) M_{p} M_{e}} \cdot 13.6 \mathrm{eV} \\
& \approx & -800 \cdot 13.6 \mathrm{eV} \\
\approx-1.04 \times 10^{4} \mathrm{eV}
\end{array}
$$

8. Consider a two-component system. At $t=0$ a particle in the state

$$
|\psi(t=0)\rangle=|\uparrow\rangle=\binom{1}{0}
$$

The particle experiences a Hamiltonian

$$
\begin{aligned}
H & =H_{0} \sigma_{z}+V \sigma_{x}, \\
\sigma_{z} & \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \sigma_{z} \equiv\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

Find the probability the original state, $|\uparrow\rangle$, is occupied as a function of time.

