DO NOT WRITE YOUR NAME OR STUDENT NUMBER ON ANY SHEET!

$$
\begin{aligned}
& \vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b}), \\
& \vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \vec{a})=\vec{c} \cdot(\vec{a} \times \vec{b}), \\
& (\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c}), \\
& \boldsymbol{\nabla} \times(\boldsymbol{\nabla} \psi)=0, \\
& \boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \vec{a})=0, \\
& \boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \vec{a})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \vec{a})-\nabla^{2} \vec{a}, \\
& \boldsymbol{\nabla} \cdot(\psi \vec{a})=\vec{a} \cdot \boldsymbol{\nabla} \psi+\psi \boldsymbol{\nabla} \cdot \vec{a}, \\
& \boldsymbol{\nabla} \times(\psi \vec{a})=\boldsymbol{\nabla} \psi \times \vec{a}+\psi \boldsymbol{\nabla} \times \vec{a}, \\
& \boldsymbol{\nabla}(\vec{a} \cdot \vec{b})=(\vec{a} \cdot \boldsymbol{\nabla}) \vec{b}+(\vec{b} \cdot \boldsymbol{\nabla}) \vec{a}+\vec{a} \times(\boldsymbol{\nabla} \times \vec{b})+\vec{b} \times(\boldsymbol{\nabla} \times \vec{a}), \\
& \boldsymbol{\nabla} \cdot(\vec{a} \times \vec{b})=\vec{b} \cdot(\boldsymbol{\nabla} \times \vec{a})-\vec{a} \cdot(\boldsymbol{\nabla} \times \vec{b}), \\
& \boldsymbol{\nabla} \times(\vec{a} \times \vec{b})=\vec{a}(\boldsymbol{\nabla} \times \vec{b})-\vec{b}(\boldsymbol{\nabla} \times \vec{a})+(\vec{b} \cdot \boldsymbol{\nabla}) \vec{a}-(\vec{a} \cdot \boldsymbol{\nabla}) \vec{b}, \\
& \boldsymbol{\nabla} \cdot \vec{r}=3, \\
& \nabla \times \vec{r}=0, \\
& \boldsymbol{\nabla} \cdot \hat{r}=2 / r, \\
& \boldsymbol{\nabla} \times \hat{r}=0, \\
& (\vec{a} \cdot \nabla) \hat{r}=\frac{1}{r}[\vec{a}-\hat{r}(\vec{a} \cdot \hat{r})]=\frac{\vec{a}_{\perp}}{r} . \\
& \int_{V} d^{3} r \nabla \cdot \vec{A}=\int_{S} d \vec{S} \cdot \vec{A}, \\
& \int_{V} d^{3} r \nabla \psi=\int_{S} \psi d \vec{S}, \\
& \int_{V} d^{3} r \nabla \times \vec{A}=\int_{S} d \vec{S} \times \vec{A}, \\
& \int_{V} d^{3} r\left(\phi \nabla^{2} \psi+\boldsymbol{\nabla} \phi \cdot \nabla \psi\right)=\int_{S} \phi d \vec{S} \cdot \nabla \psi, \\
& \int_{V} d^{3} r\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right)=\int_{S}(\phi \nabla \psi-\psi \nabla \phi) \cdot d \vec{S}, \\
& \int_{S}(\nabla \times \vec{A}) \cdot d \vec{S}=\oint d \vec{\ell} \cdot \vec{A}, \\
& \int_{S} d \vec{S} \times \boldsymbol{\nabla} \psi=\oint_{C} d \vec{\ell} \psi . \\
& \nabla^{2}=\partial_{r}^{2}+\frac{2}{r} \partial_{r}-\frac{\ell(\ell+1)}{r^{2}}, \\
& \nabla^{2}=\partial_{\rho}^{2}+\frac{1}{\rho} \partial_{\rho}-\frac{m^{2}}{r^{2}}, \\
& \nabla^{2}\left(\frac{1}{r}\right)=-4 \pi \delta(\vec{r}) \text {. }
\end{aligned}
$$

LONG ANSWER SECTION

1. (15 pts) Consider an infinitely long thin cylindrical shell of radius R oriented along the z axis. The shell has a surface charge density,

$$
\sigma=\sigma_{0} \cos \phi
$$

Find the electric potential at all positions as a function of the transverse radius $r=\sqrt{x^{2}+y^{2}}$ and the azimuthal angle $\phi=\tan ^{-1}(y / x)$.

$$
\begin{aligned}
& \Phi=\left\{\begin{array}{l}
(A / r) \cos \varphi, r>R \\
B r \cos \varphi, r<R
\end{array}\right. \\
& E_{r}=\left\{\begin{array}{l}
\left(A / r^{2}\right) \cos \varphi, r>R \\
-B \cos \varphi, r<R
\end{array}\right. \\
& \frac{A}{R^{2}}+B=4 \pi \sigma_{0}, A / R=B R \\
& 2 A / R^{2}=4 \pi \sigma_{0}, \quad \begin{array}{l}
A=2 \pi \sigma_{0} R^{2} \\
B=2 \pi \sigma_{0}
\end{array}
\end{aligned}
$$

$$
\Phi=\left\{\begin{array}{cl}
\frac{2 \pi \sigma_{0} R^{2}}{r}, & r>R \\
2 \pi \sigma_{0} r, & r<R
\end{array}\right.
$$

Extra workspace for \#1

2. Consider a set of four charges: $+Q$ at $x=a, y=a, z=0,+Q$ at $x=a, y=-a, z=0,-Q$ at $x=-a, y=-a, z=0,-Q$ at $x=-a, y=a, z=0$.
(a) (5 pts) For large distances r, the electric potential can be written as $\Phi(\vec{r})=F(\theta, \phi) / r^{n}$. What is n ?
(b) (10 pts) Find $F(\theta, \phi)$, where θ and ϕ are spherical coordinates (defined around the z axis).

$$
\text { a) dipole, } n=2
$$

Extra workspace for \#2
3. An antenna is designed by circulating a current around a circular loop of radius R with its axis along the z direction. The current has the form

$$
I(\phi, t)=I_{0} \cos (\omega t-\phi)
$$

where denotes is the azimuthal angle of a point on the loop.
(a) (5 pts) Find the charge per unit length, $\lambda(\phi, t)$.
(b) (10 pts) Find the radiated power.

$$
\text { a) } \begin{aligned}
& \partial_{t} \lambda=-\frac{1}{R} \partial_{\varphi} I_{0} \cos (w t-\varphi) \\
&=-\frac{I_{0}}{R} \sin (w t-\varphi) \\
& \lambda=\frac{I_{0}}{w R} \cos (w t-\varphi) \\
& P_{x}(t)=(\lambda(\varphi) R d \varphi R \cos \varphi \\
&=\frac{I_{0} R}{w} \int d \varphi \cos ^{2} \varphi \cos \omega t \\
& P_{x}=\frac{\pi I_{0} R}{w} \\
& P_{y}(t)=\frac{\pi I_{0} R}{w} \sin \omega t \\
& P_{y}=\frac{\pi I_{0} R}{2} \\
& P=\frac{w^{4}}{3}\left(p_{x}^{2}+P_{y}^{2}\right)=\frac{2 \pi^{2}}{3} I_{0}^{2} R^{2} w^{2} \\
& O R
\end{aligned}
$$

Extra work space for \#3
4. A rectangular wave guide has transverse dimensions, $0<x<a$ and $0<y<a$. For a transverse electric (TE) wave moving along the z axis with wave number k_{z}.
(a) (5 pts) Find the frequency of the propagating wave. Choose the solutions with the fewest nodes in the transverse wave function.
(b) (10 pts) Find the magnetic field $\vec{B}(x, y, z, t)$ for this solution.

$$
\begin{aligned}
& \text { (c) (} 5 \mathrm{pts} \text {) What is the group velocity of the wave? } \\
& a) w^{2}= \\
& \left(\frac{\pi}{a}\right)^{2}-k^{2}, w=\sqrt{k^{2}+\left(\pi^{2} / a^{2}\right)} \\
& \text { b) } \psi=B_{0} \\
& \cos \left(\frac{\pi x}{a}\right) \\
& \left(\begin{array}{l}
\text { one direntron } \\
\operatorname{con} \text { beconstad) }
\end{array}\right. \\
& B_{z}=\psi e^{i k z-i \omega t}=B \cos \frac{\pi x}{a} e^{i-k_{z}-i \omega t} \\
& \begin{aligned}
S_{t} & =\left(\frac{i k}{r^{2}-k^{2}} \nabla e^{i k z-i w t}\right. \\
& =\frac{-i^{-k}}{w^{2}-k^{2}} \frac{\pi}{a} S_{0} \hat{x} \sin \left(\frac{\pi x}{a}\right)
\end{aligned} \\
& =\frac{-i k a}{2 \pi} S_{0} \times \sin \left(\frac{\pi x}{a}\right) \\
& c V_{z}=\frac{d w}{d k}=\frac{k}{w}=\frac{k}{\sqrt{k^{2}+i t^{2} / a^{2}}}
\end{aligned}
$$

Extra work space for \#4

SHORT ANSWER SECTION

5. (3 pts each) Light is emitted from a distant source from early in the universe. Choose $>,<$ or $=$ for each answer
(a) The initial frequency of the source is \qquad than the frequency of the light measured by a present-day observer.
(b) If an observer moves toward the source, the observed frequency will be \qquad than the frequency measured by a static observer.
6. (4 pts) In terms of M_{p} / m_{e} (mass of proton to mass of electron) calculate the ratio of the radiative powers P_{e} / P_{p} emitted for a very high-energy circular accelerator of a given radius R that features either electron or proton beams of the same energy and same currents. Note:
Magnetic fields would be quite different to hold particles to the same energy and radius $\left(\frac{M_{p}}{M_{e}}\right)^{4}$
7. (3 pts each) Sally Slowpoke measures two events that both occur right in front of her nose separated by a time $\Delta \tau=1.0$ second. Roberto Rapido travels by in his space ship at some speed \vec{v}. (Circle the correct answers)
(a) The difference in the times of the two events Roberto measures, Δt^{\prime}, will

- always be positive
- may be positive or negative depending on \vec{v}.
(b) The distance between the two events measured by Robert will be

8. You wish to solve the following problem using the method of images:
"A point charge Q is placed far outside a grounded conducting spherical shell of radius R. The position of the charge is $x=0, y=0, z=A \gg R$." You are solving for the potential outside the shell.
True or false: (4 pts)
(a) The image charge is inside the sphere.

(b) The potential inside the sphere is constant.
(c) The magnitude of the image charge must be less than $|Q|$. \qquad
9. (5 pts) Which of the following are odd under parity? Circle the answers.
(a) \vec{A} (the vector potential)
(b) A_{0} (the electric potential)
(c) \vec{E} (the electric field)
(d) \vec{B} (the magnetic field)
(e) $\vec{E} \times \vec{B}$
(f) $|\vec{B}|^{2}-|\vec{E}|^{2}$
(g) $|\vec{E}|^{2}+|\vec{B}|^{2}$
(h) $\vec{E} \cdot \vec{B}$
(i) $J \cdot A$ (J is the electric current density)
10. Consider a system with non-zero electric and magnetic fields,

$$
\begin{aligned}
\vec{B}= & B_{z} \hat{z}, \quad \vec{E}=E_{x} \hat{x} \\
E_{x}>0, B_{z}>0, & E_{x}>B_{z} .
\end{aligned}
$$

A charged particle is placed at the origin, initially with zero momentum. For each question answer True or False. (6 pts)
(a) There exists a reference frame where $\vec{B}=0$. \qquad
(b) At large times the coordinate $x \rightarrow \infty$. \qquad
(c) At large times the coordinate $y \rightarrow \infty$. \qquad
(d) At some parts of the trajectory the particle's momentum p_{x} would be negative. \qquad

11. (4 pts) Consider the three charge configurations shown above:
(a) two point charges $+Q$ separated by R
(b) two spheres of radius $r<R / 2$, each with charge $+Q$ uniformly spread throughout the volume, with the centers separated by R
(c) two spherical shells of radius $r<R / 2$, each with charge $+Q$ uniformly spread throughout the surface, with the centers separated by R.

The work required to move the spheres (or points) from infinity to the separation R is labeled W_{a}, W_{b} and W_{c} for each configuration. Label each statement as true or false.
(a) $W_{a}>W_{b} \xlongequal{\Gamma}$
(b) $W_{a}>W_{c}$

(c) $W_{b}>W_{c}$

