your name(s)

## Physics 841 Quiz \#9 - Wednesday, April 5

The accelerator upgrade at Jefferson Laboratory will provide electron beams with energies of 12 GeV at currents near $100 \mu \mathrm{~A}$.

1. What is the power of the beam? (in Watts)
2. If the beam passes through a dipole magnet with a 6 T magnetic field for a distance of 75 cm , what is the power radiated into photons?
3. If the beam travels through a series of these magnets with oppositely oriented magnetic fields of this strength, and separated by 1.25 m , estimate the net path length required to reduce the beam energy by $99 \%$.

## Solutions:

a) Power of beam

$$
\begin{aligned}
P & =12 \mathrm{GeV} \cdot 100 \times 10^{-6} \mathrm{~A} \\
& =1.2 \times 10^{6} \mathrm{~W}
\end{aligned}
$$

b) Power radiated in one magnet: First consider power radiated by one electron while in magnet:

$$
\begin{aligned}
P_{e} & =\frac{2 e^{2} \gamma^{4} \dot{\beta}^{2}}{3 c} \\
\gamma & =\frac{12 \times 10^{6}}{0.511}=2.35 \times 10^{4}, \\
m \frac{d u_{y}}{d \tau} & =e B u_{x}=e B \gamma c, \\
m \gamma \frac{d v_{y}}{d t / \gamma} & =e B \gamma c, \\
\dot{\beta} & =\frac{e B}{m \gamma} \\
\frac{e B}{m} & =1.055 \times 10^{12} \mathrm{~s}^{-1}, \\
P_{e} & =\frac{2 e^{2} \gamma^{2}}{3 c}\left(\frac{e B}{m}\right)^{2} \\
\frac{e B}{m} & =1.055 \times 10^{12} \mathrm{~s}^{-1} \\
\frac{2 e^{2}}{3 c} & =5.130 \times 10^{-37} \mathrm{~J} \mathrm{~s} \\
P_{e} & =3.15 \times 10^{-4} \mathrm{~W} .
\end{aligned}
$$

Power of $N$ electrons in magnet is

$$
\begin{align*}
N & =\frac{I}{e} \frac{L}{c}=1.562 \times 10^{6},  \tag{1}\\
P & =P_{e} N  \tag{2}\\
& =492 \mathrm{~W} . \tag{3}
\end{align*}
$$

Solve for energy loss rate,

$$
\begin{align*}
E & =m c^{2} \gamma  \tag{4}\\
\dot{\gamma} & =-\frac{2 e^{2} \gamma^{2}}{3 m c^{3}}\left(\frac{e B}{m}\right)^{2},  \tag{5}\\
\dot{\gamma} & =-A \gamma^{2}, \quad A=6.977 \mathrm{~s}^{-1} . \tag{6}
\end{align*}
$$

For $\gamma_{f}=0.01 \gamma_{i}$,

$$
\begin{aligned}
A t & =\int_{t_{i}}^{t_{f}} d \gamma / \gamma^{2} \\
t & =\frac{99}{A \gamma_{i}} \\
& =6.04 \times 10^{-4} \mathrm{~s}
\end{aligned}
$$

Now find net length, which is 2.0/0.75 * length,

$$
\begin{aligned}
L & =\frac{2 c}{0.75} t \\
& =483 \mathrm{~km} .
\end{aligned}
$$

