your name(s)
Physics 841 Quiz \#6-Wednesday, Mar. 6
You may work in groups of 3 (no more than one person from previous group)
Closed note, closed mouth, closed book, open mouth...
Consider a particle of charge e and mass m moving in a circular orbit.

1. Remembering that the magnetic moment is

$$
\vec{m}=\frac{1}{2} \int d^{3} r^{\prime} \vec{r}^{\prime} \times \vec{J}\left(\vec{r}^{\prime}\right)
$$

Derive the constant of proportionality γ such that

$$
\vec{m}=\gamma \vec{\ell}
$$

where $\vec{\ell}$ is the angular momentum.
2. Remembering that the torque acting on a magnetic moment in a constant magnetic field \vec{B} is

$$
\vec{\tau}=\vec{m} \times \vec{B},
$$

find equations of motion for ℓ_{x}, ℓ_{y} and ℓ_{z} when \vec{B} is in the \hat{z} direction.
3. At $t=0$ assume the magnitude of the angular momentum is L and that direction of the $\vec{\ell}$ is given by

$$
\vec{\ell}(t=0)=L \cos \theta_{0} \hat{z}+L \sin \theta_{0} \hat{x} .
$$

Find $\vec{\ell}$ as a function of time.
4. For electrons the intrinsic magnetic moment is $\vec{\mu}=(g e \hbar / 2 m c)(\vec{s} / \hbar)$. If there is no orbital angular momentum, describe the motion of \vec{s} as a function of time in a constant magnetic field, $\vec{B}=B \hat{z}$. If the magnetic field has a strength of 4 T , find the precession frequency $f_{p}=\omega_{p} /(2 \pi)$ in Hz .

Solutions:

1.

$$
\begin{aligned}
\int J d^{2} r & =I, \\
m & =(1 / 2) \operatorname{IR}(2 \pi R), \\
I & =\frac{e v}{2 \pi R} \\
m & =\frac{e v R}{2}, \\
\ell & =m v R \\
m & =\frac{e}{2 m} \ell \\
\gamma & =\frac{e}{2 m} .
\end{aligned}
$$

2.

$$
\begin{aligned}
\vec{\tau} & =-\vec{B} \times \vec{m} \\
& =-\gamma \vec{B} \times \vec{\ell} \\
\frac{d \ell}{d t} & =\tau \\
& =-\gamma \vec{B} \times \vec{\ell}, \\
\frac{d \ell_{x}}{d t} & =\gamma B \ell_{y}, \\
\frac{d \ell_{y}}{d t} & =-\gamma B \ell_{x}, \\
\ell_{z} & =\text { constant. }
\end{aligned}
$$

3.

$$
\begin{aligned}
\ell_{z} & =L \cos \theta_{0}, \\
\ell_{x} & =L \sin \theta_{0} \cos \omega t, \\
\ell_{y} & =-L \cos \theta_{0} \sin \omega t, \\
\omega & =\gamma B .
\end{aligned}
$$

4. Same as $\# 3, \gamma=e / m, \omega=e B / m$. To get units of inverse time using $e v B$ as force, one needs

$$
\begin{aligned}
\omega_{p} & =\frac{e B}{m} \\
f_{p} & =1.1196 \times 10^{11} \mathrm{~Hz}
\end{aligned}
$$

