your name(s)
Physics 841 Quiz \#5 - Monday, Feb. 27
You may work in groups of 3 (no more than one person from previous group)
Open note, open book, open internet, open mouth...
Consider a local group of charges around the origin in a two-dimensional world. The potential due to a point charge Q at position $x=a, y=0$, as measured by an observer at coordinate r, ϕ is

$$
\begin{align*}
\Phi(r, \phi) & =-Q \ln \left(\sqrt{r^{2}-2 r a \cos \phi+a^{2}}\right) \\
& =Q\left\{-\ln (r)+\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{a}{r}\right)^{n} \cos n \phi\right\} . \tag{1}
\end{align*}
$$

This expression assumes $r>a$.

1. Consider an areal charge density of charge, σ, that is completely contained within some radius R of the origin. The potential observed for $r>R$ can be written as an expansion,

$$
\Phi(r, \phi)=A_{0} \ln (r)+\sum_{n=1}^{\infty} \frac{A_{n}}{r^{n}} \cos n \phi+\frac{B_{n}}{r^{n}} \sin n \phi
$$

Express the coefficients A_{n} and B_{n} in terms of $\sigma(\vec{r})$.
2. Find A_{n} and B_{n} for a single charge Q at $x=a, y=0$. Then show that the potential indeed sums to $-Q \ln (r-a)$ when \vec{r} is on the x axis. Do not use the identity in Eq. (1).

Solutions:

1.

$$
\begin{aligned}
\Phi(r, \phi) & =\sum_{i} q_{i}^{\prime}\left\{-\ln (r)+\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{r_{i}^{\prime}}{r}\right)^{n} \cos n\left(\phi-\phi_{i}^{\prime}\right)\right\} \\
& =\int d^{2} r^{\prime} \sigma\left(\vec{r}^{\prime}\right)\left\{-\ln (r)+\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{r^{\prime}}{r}\right)^{n} \cos n\left(\phi-\phi^{\prime}\right)\right\}, \\
& =\int d^{2} r^{\prime} \sigma\left(\vec{r}^{\prime}\right)\left\{-\ln (r)+\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{r^{\prime}}{r}\right)^{n}\left(\cos n \phi \cos n \phi^{\prime}+\sin n \phi \sin n \phi^{\prime}\right)\right\}, \\
A_{0} & =-\int d^{2} r^{\prime} \sigma\left(\vec{r}^{\prime}\right), \\
A_{n>0} & =\frac{1}{n} \int d^{2} r^{\prime} \sigma\left(r^{\prime}\right) r^{\prime n} \cos n \phi^{\prime}, \\
B_{n>0} & =\frac{1}{n} \int d^{2} r^{\prime} \sigma\left(\vec{r}^{\prime}\right) r^{\prime n} \sin n \phi^{\prime} .
\end{aligned}
$$

2.

$$
\begin{aligned}
A_{0} & =-Q, \\
A_{n>0} & =Q a^{n} / n, \\
B_{n} & =0, \\
\Phi(r, \phi=0) & =Q\left\{-\ln (r)+\sum_{n>0} \frac{1}{n} \frac{a^{n}}{r^{n}}\right\}, \\
\ln (r-a) & =\ln (r(1-a / r)) \\
& =\ln (r)+\ln (1-a / r) \\
& =\ln (r)+\sum_{n>0} \frac{(-1)^{n+1}}{n}\left(\frac{-a}{r}\right)^{n} \\
& =\ln (r)-\sum_{n>0} \frac{1}{n}\left(\frac{a}{r}\right)^{n}, \\
\Phi(r, \phi=0) & =-Q \ln (r-a) . \quad \checkmark
\end{aligned}
$$

