your name(s) \qquad
Physics 841 Quiz \#3-Monday, Feb. 6
Work by yourselves - closed note, closed book.

1. You observe two events at space-times coordinates x and y. You also observe Sally moving with four-velocity u. Express the time difference between the events that Sally would observe in terms of invariants involving x, y and u.
2. You observe uniform electric and magnetic fields,

$$
\begin{aligned}
\vec{E} & =E_{x} \hat{x}+E_{y} \hat{y}, \\
\vec{B} & =B_{x} \hat{x} .
\end{aligned}
$$

The strengths of the fields are such that $B_{x}<E_{x}$ and $B_{x}>E_{y}$. Answer TRUE or FALSE to the following questions.
(a) There exists a finite velocity by which you can boost to find a frame where $\vec{B}^{\prime}=0$
(b) There exists a finite velocity by which you can boost to find a frame where $\vec{E}^{\prime}=0$
(c) If you boost along the z axis, the \vec{B} field will stay the same
(d) If you boost along the z axis, the \vec{E} field will stay the same
3. Beginning with $F^{\alpha \beta}=\partial^{\alpha} A^{\beta}-\partial^{\beta} A^{\alpha}$, and $\tilde{F}^{\alpha \beta}=(1 / 2) \epsilon^{\alpha \beta \gamma \delta} F_{\gamma \delta}$, express $F^{\alpha \beta} \tilde{F}_{\alpha \beta}$ in terms of \vec{E} and \vec{B} using

$$
\begin{aligned}
\vec{E} & =-\nabla A_{0}-\partial_{t} \vec{A}, \\
\vec{B} & =\nabla \times \vec{A} .
\end{aligned}
$$

Show your work (Don't simply write the answer).

