your name(s) \qquad
Physics 841 Quiz \#2 - Monday, Jan. 30
Work in groups of four or fewer. This is open-note, open-book, open-mouth, open-internet, and open-mind.
Turn in one worksheet per group, with all names included.

1. Consider a region with a magnetic field, $A_{y}=B x$, which gives a magnetic field in the \hat{z} direction.
(a) Consider a boost in the \hat{y} direction by velocity v. Find the new electric and magnetic fields \vec{E}^{\prime} and \vec{B}^{\prime}.
(b) What is $\left|\vec{B}^{\prime}\right|^{2}-\left|\vec{E}^{\prime}\right|^{2}$?
(c) Are there any reference frames in which the magnetic field vanishes?

Solution:

a)

$$
\begin{gather*}
B_{z}^{\prime}=\gamma B \tag{1}\\
E_{x}^{\prime}=\gamma v B \tag{2}
\end{gather*}
$$

b) B^{2}
c) No
2. Consider a region with both a magnetic field $\vec{B}=B \hat{z}$ and an electric field $\vec{E}=E \hat{x}$, and $|B|>|E|$.
(a) Write out the electromagnetic field tensor, $F^{\alpha \beta}$.
(b) Beginning with the equations

$$
m \frac{d}{d \tau} u^{\alpha}=q F^{\alpha \beta} u_{\beta},
$$

write the equations of motion for u_{x}, u_{y} and u_{z}, in terms of $d / d \tau$, where τ is the time measured in the frame of the particle. The equations should involve E and B, rather then $F^{\alpha \beta}$. Assume the particle has charge q and mass m.
(c) Find solutions for $x^{\prime}\left(t^{\prime}\right), y^{\prime}\left(t^{\prime}\right)$ and $z^{\prime}\left(t^{\prime}\right)$, where the primes denote that you are in the frame where there is no electric field. Assume the initial conditions were set up so that $u_{z}^{\prime}=0$ and motion is circular with the center of the circle at the origin, with $x^{\prime}\left(t^{\prime}=0\right)=R$, and assume the charge q is positive. Express your answer in terms of R, $B^{\prime}=\sqrt{B^{2}-E^{2}}, m, q$ and τ. Be sure to show how the frequency of the motion depends on R, B^{\prime} and q.
(d) Going back to the original frame, where there is also an electric field, find $x\left(t^{\prime}\right), y\left(t^{\prime}\right)$ and also $t\left(t^{\prime}\right)$. (Note it would be difficult to express $x(t)$ and $y(t)$ in closed form.)
(e) For very large times find $\bar{x}(t)$ and $\bar{y}(t)$ averaged over an oscillation period. I.e. only find the dependence that grows with time. With what velocity does the point $(\bar{x}(t), \bar{y}(t))$ move? How is this answer related to the velocity required to boost away the electric field?

Solution:
a)

$$
F^{\alpha \beta}=\left(\begin{array}{rrrr}
0 & -E & 0 & 0 \\
E & 0 & -B & 0 \\
0 & B & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

b)

$$
\begin{aligned}
\partial_{\tau} u_{x} & =q E u_{0}+q B u_{x} \\
\partial_{\tau} u_{y} & =-q B u_{x}
\end{aligned}
$$

c)

$$
\begin{aligned}
x^{\prime} & =R \cos \left(\omega^{\prime} t^{\prime}+\phi^{\prime}\right), \quad \omega^{\prime}=\frac{q B}{m \gamma_{\omega}}, \quad \gamma_{\omega}=1 / \sqrt{1-\omega^{\prime 2} R^{2}} . \\
y^{\prime} & =-R \sin \left(\omega^{\prime} t^{\prime}+\phi^{\prime}\right) \\
t^{\prime} & =\gamma(t-v y), \quad v=E / B, \gamma=1 / \sqrt{1-v^{2}} .
\end{aligned}
$$

d) boost in \hat{y} direction,

$$
\begin{aligned}
x & =x^{\prime} \\
y & =\gamma y^{\prime}-\gamma v t^{\prime} \\
t & =\gamma t^{\prime}-\gamma v y^{\prime}
\end{aligned}
$$

e)

$$
\begin{aligned}
y & =\gamma y^{\prime}+\gamma v(\gamma t-\gamma v y) \\
y\left(1+\gamma^{2} v^{2}\right) & =\gamma y^{\prime}+\gamma^{2} v t \\
y & =\frac{y^{\prime}}{\gamma}+v t
\end{aligned}
$$

Because y^{\prime} oscillates, $\bar{y}=v t$, with $v=E / B$.

