- Find the instantaneous power radiated in the dipole approximation as a function of the energy $E(t)$

Begin with the standard equation for power radiated by a point charge accelerating perpendicularly to it's velocity.

$$
\begin{equation*}
P=\frac{2}{3 c} e^{2} \dot{\beta}^{2} \tag{1}
\end{equation*}
$$

Remembering that $\beta=\frac{v}{c}$ if working in units where $v \neq c$ and applying the Lorentz force law $F=q \frac{\vec{v}}{c} \times \vec{B}$

$$
\begin{align*}
\dot{\beta} & =\frac{e v B}{m c^{2}} \tag{2}\\
P & =\frac{2 e^{4} v^{2} B^{2}}{3 m^{2} c^{5}} \tag{3}
\end{align*}
$$

This can be cleaned up a bit by recognizing the cyclotron frequency $\omega_{c}=\frac{e B}{m c}$ which is convenient because it can be calculated in any sane system of units to deal with the B field. Letting $E=\frac{1}{2} m v^{2}$ for a classical particle,

$$
\begin{equation*}
P=\frac{4 e^{2} \omega_{c}{ }^{2}}{3\left(m c^{2}\right) c} E \tag{5}
\end{equation*}
$$

- Find the instantaneous power radiated in the dipole approximation as a function of the energy $E(t)$

Since $P=\frac{d E}{d t}$ is the energy lost by the particle

$$
\begin{aligned}
-\frac{d E}{E} & =\frac{4 e^{2} \omega_{c}^{2}}{3\left(m c^{2}\right) c} d t \\
E & =E_{0} e^{-\frac{4 e^{2} \omega_{c}^{2}}{3\left(m c^{2}\right) c} t}
\end{aligned}
$$

- Find the amount of time necessary for the electron's energy to decrease by a factor of 2

Starting with the expression for energy and expressing the result in terms of \hbar and the fine structure constant to simplify numerical calculations

$$
\begin{align*}
E & =E_{0} e^{-\frac{4 e^{2} \omega_{c}{ }^{2}}{3\left(m c^{2}\right) c} t} \tag{6}\\
\frac{1}{2} & =e^{-\frac{4 e^{2} \omega^{2}}{3\left(m c^{2}\right) c} t} \tag{7}\\
\ln 2 & =\frac{4 e^{2} \omega_{c}^{2}}{3\left(m c^{2}\right) c} t \tag{8}\\
\frac{t}{\tau}=\frac{\omega_{c} t}{2 \pi} & =\frac{3 \ln 2\left(m c^{2}\right) c}{8 \pi e^{2} \omega_{c}} \tag{9}\\
\frac{t}{\tau} & =\frac{3 \ln 2}{8 \pi} \frac{m c^{2}}{\alpha \omega_{c} \hbar} \tag{10}
\end{align*}
$$

This dimensionless result gives the time for the power to decrease by a factor of two relative to the period of its cyclotron motion, and for $B=1 T$ works out to $\frac{t}{\tau} \approx 4 \times 10^{11}$ so the electron radiates power very slowly compared to its motion.

