PHY 841: Student Composed Questions

Tong Li \& Jessica Maldonado
5/2/17

Problem 1 Angular Distribution of Radiation from Relativistic Particles

Suppose you have a linear accelerator in which an electron with velocity $\beta=v / c$ is being accelerated.
a) W.r.t. the direction of \vec{v}, find the angle $\theta_{\max }$ at which the maximum radiation is emitted.
b) Show that for the ultra-relativistic case $(\beta \rightarrow 1), \theta_{\max } \approx \sqrt{\frac{1-\beta}{2}}$
c) Show that for the non-relativistic case $(\beta \rightarrow 0), \theta_{\max } \approx \pi / 2$
a)

For a linearly accelerated electron, the radiation power per solid angle is

$$
\begin{equation*}
\frac{d P}{d \Omega}=\frac{e^{2}}{4 \pi(1-\beta \cos \theta)^{5}}|\dot{\vec{\beta}}|^{2} \sin ^{2} \theta \tag{1}
\end{equation*}
$$

So the angle of maximum power is given by

$$
\begin{equation*}
\frac{d}{d \theta} \frac{d P}{d \Omega}=\frac{e^{2}|\dot{\vec{\beta}}|^{2}}{4 \pi}\left[\frac{2 \sin \theta \cos \theta}{(1-\beta \cos \theta)^{5}}-\frac{5 \beta \sin ^{3} \theta}{(1-\beta \cos \theta)^{6}}\right]=0 \tag{2}
\end{equation*}
$$

$\theta=0$ corresponds to the angle of minimum power. So the angle of maximum power is given by

$$
\begin{equation*}
\frac{2 \cos \theta}{(1-\beta \cos \theta)^{5}}-\frac{5 \beta \sin ^{2} \theta}{(1-\beta \cos \theta)^{6}}=0 \tag{3}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
2 \cos \theta(1-\beta \cos \theta)-5 \beta\left(1-\cos ^{2} \theta\right)=0 \tag{4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\theta_{\max }=\arccos \left(\frac{\sqrt{15 \beta^{2}+1}-1}{3 \beta}\right) \tag{5}
\end{equation*}
$$

b)

Let $x=1-\beta$. When $\beta \rightarrow 1, x \rightarrow 0$. Expand $\cos \theta_{\max }$ to the 1 st order of x.

$$
\begin{align*}
\cos \theta_{\max } & =\frac{\sqrt{15 \beta^{2}+1}-1}{3 \beta} \\
& =\frac{\sqrt{15(1-x)^{2}+1}-1}{3(1-x)} \\
& =\frac{1}{3}\left(4 \sqrt{1-\frac{15}{8} x+\frac{15}{16} x^{2}}-1\right)(1-x)^{-1} \tag{6}\\
& \approx \frac{1}{3}\left[4\left(1-\frac{15}{16} x\right)-1\right](1+x) \\
& =\left(1-\frac{5}{4} x\right)(1+x) \\
& \approx 1-\frac{1}{4} x
\end{align*}
$$

So when $x \rightarrow 0, \cos \theta_{\max } \rightarrow 1$. Then $\theta_{\max }$ is very small. Thus,

$$
\begin{equation*}
\cos \theta_{\max } \approx 1-\frac{1}{2} \theta_{\max }^{2} \tag{7}
\end{equation*}
$$

Then

$$
\begin{equation*}
1-\frac{1}{2} \theta_{\max }^{2} \approx 1-\frac{1}{4} x \Rightarrow \theta_{\max } \approx \sqrt{\frac{x}{2}}=\sqrt{\frac{1-\beta}{2}} \tag{8}
\end{equation*}
$$

c)

When $\beta \rightarrow 0$,

$$
\begin{equation*}
\frac{d P}{d \Omega} \approx \frac{e^{2}}{4 \pi}|\dot{\vec{\beta}}|^{2} \sin ^{2} \theta \tag{9}
\end{equation*}
$$

So the angle at which the maximum radiation is emitted is $\theta_{\max }=\pi / 2$
This result can also be obtained by

$$
\begin{gather*}
\lim _{\beta \rightarrow 0} \frac{\sqrt{15 \beta^{2}+1}-1}{3 \beta}=\lim _{\beta \rightarrow 0} \frac{\frac{30 \beta}{\sqrt{15 \beta^{2}+1}}}{3}=0 \tag{10}\\
\Rightarrow \lim _{\beta \rightarrow 0} \theta_{\max }=\lim _{\beta \rightarrow 0} \arccos \frac{\sqrt{15 \beta^{2}+1}-1}{3 \beta}=\arccos 0=\frac{\pi}{2} \tag{11}
\end{gather*}
$$

